| 注册
首页|期刊导航|计算机应用与软件|基于联邦学习的航班延误预测模型

基于联邦学习的航班延误预测模型

李国 秦维

计算机应用与软件2024,Vol.41Issue(5):72-78,7.
计算机应用与软件2024,Vol.41Issue(5):72-78,7.DOI:10.3969/j.issn.1000-386x.2024.05.011

基于联邦学习的航班延误预测模型

FLIGHT DELAY PREDICTION MODEL BASED ON FEDERATED LEARNING

李国 1秦维1

作者信息

  • 1. 中国民航大学计算机科学与技术学院 天津 300300
  • 折叠

摘要

Abstract

In view of the fact that the existing flight delay prediction methods do not consider the problems of multiple data sources and data privacy,this paper proposes a federated learning framework,which integrates logistic regression methods,so that the training data can kept locally without uploading and sharing,and the flight delay can be predicted on the premise of protecting data privacy.At the same time,aimed at the problem of indirect information leakage in the training process,homomorphic encryption technology was adopted to encrypt the transmitted parameters.The experimental results show that the federated modeling method can achieve similar accuracy than the traditional method without sharing data,which provides a practical scheme for optimizing civil aviation business.

关键词

航班延误/数据隐私/联邦学习/同态加密

Key words

Flight delay/Data privacy/Federated learning/Homomorphic encryption

分类

计算机与自动化

引用本文复制引用

李国,秦维..基于联邦学习的航班延误预测模型[J].计算机应用与软件,2024,41(5):72-78,7.

基金项目

国家自然科学基金项目(U2033205). (U2033205)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文