| 注册
首页|期刊导航|计算机应用与软件|基于CNN和双向LSTM的房颤预测模型

基于CNN和双向LSTM的房颤预测模型

吴石远 陈艳红 杨湘 高峰 顾进广

计算机应用与软件2024,Vol.41Issue(5):138-146,9.
计算机应用与软件2024,Vol.41Issue(5):138-146,9.DOI:10.3969/j.issn.1000-386x.2024.05.022

基于CNN和双向LSTM的房颤预测模型

PREDICTION MODEL OF ATRIAL FIBRILLATION BASED ON CNN AND BIDIRECTIONAL LSTM

吴石远 1陈艳红 2杨湘 1高峰 1顾进广1

作者信息

  • 1. 武汉科技大学计算机科学与技术学院 湖北武汉 430065||湖北省智能信息处理与实时工业系统重点实验室 湖北武汉 430065
  • 2. 武汉亚洲心脏病医院 湖北武汉 430022
  • 折叠

摘要

Abstract

The existing model based on CNN cannot extract the temporal characteristics from patient data,while the models based on recurrent neural network ignore the different characteristics of various medical variables.To solve these problems,a predictive model of atrial fibrillation(AF)combined with CNN and RNN is proposed.This model used an independent CNN module to capture the different characteristics among medical variables in the electronic health records(EHR)data.At the same time,an independent RNN module was used to capture the temporal characteristics and correlation characteristics among medical variables in the EHR data.Experimental results on real hospital data sets show that compared with some of the latest disease prediction methods based on EHR data,the model performs better in predicting AF,with an increase of 2.14%in F1 and 1.32%in AUC.

关键词

心房颤动/疾病预测/电子病历/卷积神经网络/长短时间记忆网络

Key words

Atrial fibrillation/Disease prediction/Electronic health records/Convolutional neural network/Long short-term memory

分类

医药卫生

引用本文复制引用

吴石远,陈艳红,杨湘,高峰,顾进广..基于CNN和双向LSTM的房颤预测模型[J].计算机应用与软件,2024,41(5):138-146,9.

基金项目

国家自然科学基金项目(U1836118) (U1836118)

教育部新一代信息技术创新项目(2018A03025). (2018A03025)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文