| 注册
首页|期刊导航|计算机应用与软件|基于改进SSD的自然场景小交通标志检测

基于改进SSD的自然场景小交通标志检测

郭烊君 雷景生

计算机应用与软件2024,Vol.41Issue(5):153-157,263,6.
计算机应用与软件2024,Vol.41Issue(5):153-157,263,6.DOI:10.3969/j.issn.1000-386x.2024.05.024

基于改进SSD的自然场景小交通标志检测

SMALL TRAFFIC SIGN DETECTION IN NATURAL SCENE BASED ON IMPROVED SSD

郭烊君 1雷景生2

作者信息

  • 1. 上海电力大学计算机科学与技术学院 上海 201300
  • 2. 浙江科技学院信息与电子工程学院 浙江杭州 310023
  • 折叠

摘要

Abstract

In order to improve the accuracy of the of small traffic signs detection in complex natural traffic scenes,an improved SSD algorithm is proposed.Parallel multi-scale feature fusion was added to multiple detection layers of SSD.The combination of shallow and deep features compensated the disadvantages of the SSD model in its detections of the small targets.The attention mechanism was added in multiple detection heads of SSD model to enhance the feature extraction effect of small traffic signs.The focal loss function was applied to reduce the effect of the background to the overall loss and avoid overfitting to the background.The experimental results show that the mPA of detecting small traffic signs with the improved SSD model in the complex natural scenes is improved by 4.9 percentage points compared with the original model.

关键词

SSD模型/小交通标志检测/多尺度特征融合/注意力机制

Key words

SSD model/Small traffic sign detection/Multi-scale feature fusion/Attention mechanism

分类

信息技术与安全科学

引用本文复制引用

郭烊君,雷景生..基于改进SSD的自然场景小交通标志检测[J].计算机应用与软件,2024,41(5):153-157,263,6.

基金项目

国家自然科学基金项目(61972357). (61972357)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文