基于图神经网络的变压器短路电流计算方法OA北大核心CSTPCD
A Graph Neural Network-based Method for Transformer Short-circuit Current Calculation
近年来,随着电力系统复杂程度日益提高,变压器运行安全已成为影响电力系统稳定运行的关键因素.目前流经变压器短路电流计算多基于电网拓扑结构及变压器等效阻抗等数据,此类方法的灵活性和实时性较低,未考虑系统实际运行方式,难以满足电力系统实时运行的要求.为此,基于图卷积神经网络,提出一种考虑潮流条件下的变压器短路电流计算方法,通过引入变压器各侧母线和区域拓扑,训练得到变压器短路电流计算模型.引入注意力机制,使模型对不同运行条件下的电网潮流动态更为敏感.经过某区域实际电网算例验证,该方法计算得到的短路电流相较于参考值误差较小,且计算误差分布集中,可基本满足实际运行中对于短路电流计算的要求.
With the increasing complexity of power systems in recent years,transformer operation safety has become a key issue that affects the stable operation of the power system.Currently,calculation methods of short-circuit current through transformers are mostly based on the power grid topology and transformer equivalent impedance.These methods have low flexibility and real-time performance and do not consider the actual operation mode of the system,making it difficult to meet the requirements of real-time operation of power systems.In this paper,a transformer short-circuit current calculation method considering flow conditions is proposed based on a graph convolutional neural network.By introducing the features of transformer bus and regional topology,a transformer short-circuit current calculation model is trained.This method introduces attention mechanisms to make the model more sensitive to dynamic power flow conditions under different operating conditions.Verified by an actual power grid example in a region,the calculated short-circuit current using this method has a small error compared to the reference value,and the distribution of calculation errors is concentrated,which can basically meet the requirements of short-circuit current calculation in practical operation.
邹德旭;洪志湖;代维菊;黎文浩;徐衍会;郑乐
南方电网云南电网有限责任公司电力科学研究院,云南省 昆明市 650217南方电网科学研究院有限责任公司,广东省 广州市 510700华北电力大学电气与电子工程学院,北京市 海淀区 100226
动力与电气工程
短路电流变压器图卷积神经网络注意力机制
short-circuit currenttransformergraph convolutional neural networksattention mechanism
《全球能源互联网》 2024 (003)
303-311 / 9
评论