| 注册
首页|期刊导航|气象科学|多种机器学习方法在京津冀地区低能见度天气预报中的应用

多种机器学习方法在京津冀地区低能见度天气预报中的应用

张庆 张楠 陈子煊 陈宏

气象科学2024,Vol.44Issue(2):362-374,13.
气象科学2024,Vol.44Issue(2):362-374,13.DOI:10.12306/2024jms.0014

多种机器学习方法在京津冀地区低能见度天气预报中的应用

Application of multiple machine learning methods in low-visibility weather forecasting in Beijing-Tianjin-Hebei region

张庆 1张楠 1陈子煊 2陈宏1

作者信息

  • 1. 天津市海洋气象重点实验室,天津 300074||天津市气象台,天津 300074
  • 2. 天津市突发公共事件预警信息发布中心,天津 300074
  • 折叠

摘要

Abstract

Based on observation data from the Beijing-Tianjin-Hebei National Weather Stations between 2017 and 2021,and ERA5 reanalysis data,a forecasting model for light fog and fog was developed by using a variety of machine learning algorithms.The study also investigated the influence of reanalysis and topographic factors on model performance,and utilized a method combining multi-model integration and statistical voiding to optimize the model.The main findings are as follows:(1)ensemble learning methods such as XGBoost(eXtreme Gradient Boosting),LightGBM(Light Gradient Boosting Machine),and random forest outperform the decision tree method in terms of low-visibility weather forecast ability;(2)the performance of the XGBoost and LightGBM models is significantly improved when introducing ERA5 reanalysis and topographic factors.Specifically,the TS(Threat Score)of fog forecast is 30%and 32%higher than that built on surface elements only,reaching 0.52 and 0.49,and the POD(Probability of Detection)is 0.62 and 0.87,respectively.In addition,the TS of light fog and fog forecast increase to 0.51 and 0.54 after stacking two models;(3)during a regional fog event in the fall of 2022,our methods accurately predict fog 72 h in advance.In particular,the LightGBM model performs best,with 0-36 h fog forecast TS and 0-72 h light fog forecast TS reaching 0.3,which is better than ECMWF(European Center for Medium Weather Forecasting)in accuracy and timeliness.

关键词

京津冀/低能见度天气预报/ERA5再分析资料/机器学习

Key words

Beijing-Tianjin-Hebei region/low-visibility weather forecast/ERA5 reanalysis data/machine learning

分类

天文与地球科学

引用本文复制引用

张庆,张楠,陈子煊,陈宏..多种机器学习方法在京津冀地区低能见度天气预报中的应用[J].气象科学,2024,44(2):362-374,13.

基金项目

天津市气象局科研资助项目(202203ybxm02) (202203ybxm02)

气象科学

OACSTPCD

1009-0827

访问量0
|
下载量0
段落导航相关论文