| 注册
首页|期刊导航|太赫兹科学与电子信息学报|实体识别技术研究进展综述

实体识别技术研究进展综述

马艺洁 赖海光 刘子威 杨楠 张更新

太赫兹科学与电子信息学报2024,Vol.22Issue(5):503-515,13.
太赫兹科学与电子信息学报2024,Vol.22Issue(5):503-515,13.DOI:10.11805/TKYDA2023436

实体识别技术研究进展综述

Overview of the research progress in entity recognition technology

马艺洁 1赖海光 2刘子威 1杨楠 1张更新1

作者信息

  • 1. 南京邮电大学 卫星通信研究所,江苏 南京 210003
  • 2. 南京控维通信科技有限公司,江苏 南京 211135
  • 折叠

摘要

Abstract

Entity recognition technology,as an important step in constructing knowledge graphs,has been extensively applied in natural language processing applications such as semantic network,machine translation,and question answering systems.It plays a crucial role in promoting the practical application of natural language processing technology.According to the development process of entity recognition technology,the existing entity recognition methods are investigated in this paper.These methods can be classified as:early rule and dictionary based entity recognition methods,machine learning based entity recognition methods,and deep learning-based entity recognition methods.The core ideas,advantages and disadvantages,and representative models of each entity recognition method are summarized,especially the latest entity recognition methods based on Bi-directional Long Short-term Memory(BiLSTM)and Transformer.Additionally,the current mainstream datasets and evaluation criteria are introduced.Finally,facing the semantic requirements of future machine communication,we have summarized the challenges faced by entity recognition technology,and its future advancement in Internet of Things(IoT)business data is anticipated.

关键词

实体识别/语义提取/深度学习/知识图谱

Key words

entity recognition/semantic extraction/deep learning/knowledge graph

分类

电子信息工程

引用本文复制引用

马艺洁,赖海光,刘子威,杨楠,张更新..实体识别技术研究进展综述[J].太赫兹科学与电子信息学报,2024,22(5):503-515,13.

基金项目

国家自然科学基金资助项目(U21A20450 ()

62271266) ()

江苏省前沿引领技术基础研究专项资助项目(BK20192002 ()

BK20212001) ()

太赫兹科学与电子信息学报

OACSTPCD

2095-4980

访问量0
|
下载量0
段落导航相关论文