| 注册
首页|期刊导航|移动通信|相关噪声下基于深度学习的LDPC码联合降噪译码算法设计

相关噪声下基于深度学习的LDPC码联合降噪译码算法设计

杨恩鑫 袁磊 郭毅 岳新东

移动通信2024,Vol.48Issue(5):83-88,6.
移动通信2024,Vol.48Issue(5):83-88,6.DOI:10.3969/j.issn.1006-1010.20240322-0001

相关噪声下基于深度学习的LDPC码联合降噪译码算法设计

Joint Denoising and Decoding of LDPC Codes Under Correlated Noise Based on Deep Learning

杨恩鑫 1袁磊 1郭毅 2岳新东3

作者信息

  • 1. 兰州大学信息科学与工程学院,甘肃兰州 730000
  • 2. 中国科学院西安光学精密机械研究所,陕西西安 710119
  • 3. 甘肃省无线电监测站,甘肃兰州 730000
  • 折叠

摘要

Abstract

To enhance the decoding performance of wireless communication systems utilizing low-density parity-check codes and high-order modulation in correlated noise environments,we propose a deep learning-based joint denoising and decoding algorithm.The denoiser incorporates a residual shrinkage building unit,and the decoder employs a neural network-based min-sum decoding algorithm using recurrent neural networks(RNNs).In our joint denoising and decoding(JDD)approach,a complex residual shrinkage convolutional neural network(CRSCNN)capitalizes on the superiority of complex neural networks over real-valued networks for processing complex signals.The received complex signals are directly fed into the CRSCNN,utilizing a novel multi-task learning strategy that jointly optimizes denoising and decoding loss functions to improve decoding performance.Simulation results demonstrate that the CRSCNN-based JDD algorithm achieves superior decoding performance compared to the neural network-based min-sum decoding algorithm using RNNs.

关键词

低密度奇偶校验码/高阶调制/相关噪声/深度学习/残余收缩模块

Key words

Low-density parity-check codes/high-order modulation/correlated noise/deep learning/residual shrinkage building unit

分类

信息技术与安全科学

引用本文复制引用

杨恩鑫,袁磊,郭毅,岳新东..相关噪声下基于深度学习的LDPC码联合降噪译码算法设计[J].移动通信,2024,48(5):83-88,6.

基金项目

甘肃省科技计划资助项目"智能反射面辅助的超可靠低延时通信研究"(22JR5RA490) (22JR5RA490)

移动通信

1006-1010

访问量0
|
下载量0
段落导航相关论文