| 注册
首页|期刊导航|噪声与振动控制|基于改进PNCC-SVM的滚动轴承故障声纹识别方法

基于改进PNCC-SVM的滚动轴承故障声纹识别方法

王寅杰 邓艾东 范永胜 占可 高原

噪声与振动控制2024,Vol.44Issue(3):146-151,164,7.
噪声与振动控制2024,Vol.44Issue(3):146-151,164,7.DOI:10.3969/j.issn.1006-1355.2024.03.022

基于改进PNCC-SVM的滚动轴承故障声纹识别方法

Voiceprint Recognition Method for Rolling Bearing Faults Diagnosis Based on Improved PNCC-SVM

王寅杰 1邓艾东 1范永胜 2占可 1高原1

作者信息

  • 1. 东南大学 大型发电装备安全运行与智能测控国家工程研究中心,南京 210096||东南大学 能源与环境学院,南京 210096
  • 2. 国家能源集团江苏电力有限公司,南京 215433
  • 折叠

摘要

Abstract

Aiming at the problems of low SNR and being prone to be disturbed by environmental noise in the sound signal analysis of rolling bearings,a voiceprint recognition method for rolling bearing faults diagnosis based on improved power-normalized cepstral coefficients(PNCC)and support vector machine(SVM)is proposed.Firstly,the bearing sound signal is preprocessed,and the improved PNCC is extracted as the feature vector.Then,the voiceprint recognition model is established by SVM algorithm to identify the bearing fault type,and the recognition accuracy of the proposed method after superimposing the noise is tested.The results show that the improved PNCC has the advantage of high recognition accuracy.Compared with the original PNCC,the average recognition accuracy is raised by 13.35%under noise interference,and the robustness is stronger.The research results may provide a reference for the application of sound signal feature extraction and fault identification of rolling bearings.

关键词

故障诊断/滚动轴承/声纹识别/鲁棒性/功率归一化倒谱系数/支持向量机

Key words

fault diagnosis/rolling bearing/voiceprint recognition/robustness/PNCC/SVM

分类

机械制造

引用本文复制引用

王寅杰,邓艾东,范永胜,占可,高原..基于改进PNCC-SVM的滚动轴承故障声纹识别方法[J].噪声与振动控制,2024,44(3):146-151,164,7.

基金项目

江苏省碳达峰碳中和科技创新专项资金资助项目(BA2022214) (BA2022214)

江苏省重点研发计划资助项目(BE2020034) (BE2020034)

中央高校基本科研业务费专项资金资助项目(3203002201C3) (3203002201C3)

噪声与振动控制

OA北大核心CSTPCD

1006-1355

访问量0
|
下载量0
段落导航相关论文