| 注册
首页|期刊导航|长江科学院院报|基于EMD-DELM-LSTM组合模型的湖泊水位多时间尺度预测

基于EMD-DELM-LSTM组合模型的湖泊水位多时间尺度预测

余周 姜涛 范鹏辉 牛超群 陈兵

长江科学院院报2024,Vol.41Issue(6):28-35,8.
长江科学院院报2024,Vol.41Issue(6):28-35,8.DOI:10.11988/ckyyb.20230032

基于EMD-DELM-LSTM组合模型的湖泊水位多时间尺度预测

Multi-time Scale Prediction for Lake Water Level Based on EMD-DELM-LSTM Combined Model

余周 1姜涛 1范鹏辉 1牛超群 1陈兵1

作者信息

  • 1. 华南理工大学环境与能源学院,广州 510006
  • 折叠

摘要

Abstract

Given the challenges associated with predicting water level time series,attributed to their mixed linear and nonlinear characteristics and high uncertainty,we propose a combined model,termed EMD-DELM-LSTM,in-tegrating empirical mode decomposition(EMD),long-short-term memory network(LSTM),and deep extreme learning machine(DELM).In this framework,DELM and LSTM operate in parallel and in series with EMD.Ini-tially,the original signal is decomposed into distinct intrinsic mode functions(IMFs)via EMD,categorizing them into high,medium,and low frequency signals.These signals are then fed into the DELM-LSTM parallel structure for prediction and reconstruction.To validate the efficacy of the model,we utilize data from a lake at a university in Guangzhou.Results indicate superior performance compared to EMD-LSTM,EMD-DELM,LSTM,DELM,and BiLSTM models across various time scales,with the most pronounced enhancement observed at the 40-minute scale.Notably,performance improves by 43.08%,22.92%,45.79%,30.92%,and 47.31%when compared to the re-spective reference models.These findings underscore the reliability and stability of our proposed model for water lev-el prediction across different temporal scales.

关键词

水位预测/EMD-DELM-LSTM/经验模态分解/多时间尺度分析/人工神经网络

Key words

water level prediction/EMD-DELM-LSTM/empirical mode decomposition/multi-time scale analysis/artificial neural network

分类

天文与地球科学

引用本文复制引用

余周,姜涛,范鹏辉,牛超群,陈兵..基于EMD-DELM-LSTM组合模型的湖泊水位多时间尺度预测[J].长江科学院院报,2024,41(6):28-35,8.

基金项目

国家自然科学基金项目(51978278) (51978278)

长江科学院院报

OA北大核心CSTPCD

1001-5485

访问量0
|
下载量0
段落导航相关论文