| 注册
首页|期刊导航|长江科学院院报|基于数据分解与斑马算法优化的混合核极限学习机月径流预测

基于数据分解与斑马算法优化的混合核极限学习机月径流预测

李菊 崔东文

长江科学院院报2024,Vol.41Issue(6):42-50,9.
长江科学院院报2024,Vol.41Issue(6):42-50,9.DOI:10.11988/ckyyb.20230782

基于数据分解与斑马算法优化的混合核极限学习机月径流预测

Monthly Runoff Prediction Using Hybrid Kernel Extreme Learning Machine Based on Data Decomposition and Zebra Algorithm Optimization

李菊 1崔东文2

作者信息

  • 1. 云南开放大学城市建设学院,昆明 650500
  • 2. 云南省文山州水务局,云南文山 663000
  • 折叠

摘要

Abstract

In order to enhance the precision of monthly runoff forecasts and optimize the prediction performance of the Hybrid Kernel Extreme Learning Machine(HKELM),we propose a synergistic approach integrating Wavelet Packet Decomposition(WPT),the Zebra Optimization Algorithm(ZOA),and HKELM.The approach involves applying WPT to preprocess monthly runoff time series data and constructing a HKELM that combines local Gaussi-an radial basis function with global polynomial kernel function.By refining HKELM hyperparameters(including regularization parameters,kernel parameters,and weight coefficients)through ZOA,we establish the WPT-ZOA-HKELM model,alongside comparative models such as WPT-Genetic Algorithm(GA)-HKELM,WPT-Grey Wolf Optimization(GWO)algorithm-HKELM,WPT-Whale Optimization(WOA)-HKELM,WPT-ZOA Extreme Learn-ing Machine(ELM),WPT-ZOA Least Squares Support Vector Machine(LSSVM),and ZOA-HKELM.These models are evaluated using monthly runoff time series data from the Yingluoxia and Tuolai River hydrological sta-tions in the Heihe River Basin.Our findings indicate that:(1)The WPT-ZOA-HKELM model achieves average ab-solute percentage errors of 1.054%and 0.761%respectively,with determination coefficients of 0.999 9,surpassing other comparative models in terms of prediction accuracy and performance.(2)Optimization of HKELM hyperpa-rameters with ZOA enhances predictive performance compared to GWO,WOA,and GA.(3)Through leveraging WPT,ZOA,and HKELM,the prediction model significantly improves monthly runoff forecast accuracy.Under e-quivalent decomposition and optimization conditions,the predictive performance of HKELM is superior to ELM and LSSVM.

关键词

月径流预测/时间序列/斑马优化算法/混合核极限学习机/小波包变换/超参数优化

Key words

monthly runoff forecast/time series/zebra optimization algorithm/hybrid kernel extreme learning ma-chine/wavelet packet transform/hyperparameter optimization

分类

建筑与水利

引用本文复制引用

李菊,崔东文..基于数据分解与斑马算法优化的混合核极限学习机月径流预测[J].长江科学院院报,2024,41(6):42-50,9.

基金项目

云南省教育厅教育科学研究基金项目(2023J0797) (2023J0797)

云南省水利厅水利科技项目(2024BC202003) (2024BC202003)

长江科学院院报

OA北大核心CSTPCD

1001-5485

访问量0
|
下载量0
段落导航相关论文