长江科学院院报2024,Vol.41Issue(6):42-50,9.DOI:10.11988/ckyyb.20230782
基于数据分解与斑马算法优化的混合核极限学习机月径流预测
Monthly Runoff Prediction Using Hybrid Kernel Extreme Learning Machine Based on Data Decomposition and Zebra Algorithm Optimization
摘要
Abstract
In order to enhance the precision of monthly runoff forecasts and optimize the prediction performance of the Hybrid Kernel Extreme Learning Machine(HKELM),we propose a synergistic approach integrating Wavelet Packet Decomposition(WPT),the Zebra Optimization Algorithm(ZOA),and HKELM.The approach involves applying WPT to preprocess monthly runoff time series data and constructing a HKELM that combines local Gaussi-an radial basis function with global polynomial kernel function.By refining HKELM hyperparameters(including regularization parameters,kernel parameters,and weight coefficients)through ZOA,we establish the WPT-ZOA-HKELM model,alongside comparative models such as WPT-Genetic Algorithm(GA)-HKELM,WPT-Grey Wolf Optimization(GWO)algorithm-HKELM,WPT-Whale Optimization(WOA)-HKELM,WPT-ZOA Extreme Learn-ing Machine(ELM),WPT-ZOA Least Squares Support Vector Machine(LSSVM),and ZOA-HKELM.These models are evaluated using monthly runoff time series data from the Yingluoxia and Tuolai River hydrological sta-tions in the Heihe River Basin.Our findings indicate that:(1)The WPT-ZOA-HKELM model achieves average ab-solute percentage errors of 1.054%and 0.761%respectively,with determination coefficients of 0.999 9,surpassing other comparative models in terms of prediction accuracy and performance.(2)Optimization of HKELM hyperpa-rameters with ZOA enhances predictive performance compared to GWO,WOA,and GA.(3)Through leveraging WPT,ZOA,and HKELM,the prediction model significantly improves monthly runoff forecast accuracy.Under e-quivalent decomposition and optimization conditions,the predictive performance of HKELM is superior to ELM and LSSVM.关键词
月径流预测/时间序列/斑马优化算法/混合核极限学习机/小波包变换/超参数优化Key words
monthly runoff forecast/time series/zebra optimization algorithm/hybrid kernel extreme learning ma-chine/wavelet packet transform/hyperparameter optimization分类
建筑与水利引用本文复制引用
李菊,崔东文..基于数据分解与斑马算法优化的混合核极限学习机月径流预测[J].长江科学院院报,2024,41(6):42-50,9.基金项目
云南省教育厅教育科学研究基金项目(2023J0797) (2023J0797)
云南省水利厅水利科技项目(2024BC202003) (2024BC202003)