基于迁移学习的岩石边坡微地震事件检测算法OA
A landslide microseismicity detection method based on transfer learning
基于迁移学习,设计一套岩石边坡微地震事件检测算法流程,用于自动化处理岩石边坡数据.基于海量人工标注的天然地震数据进行训练,得到深度学习预训练模型,并利用少量人工标注的微地震数据进行微调,使得模型可以适用于滑坡体微地震数据.采用实际标注数据进行测试,结果表明,基于迁移学习模型的查准率和查全率分别可达 0.884 和 0.91.分析认为,在迁移学习流程中,深度学习模型减少了对于标注数据的依赖,同时可以仅经少量迭代即可得到鲁棒的、高精度结果.该模型部分程序是开源的,可以将其迁移到更多区域的微地震事件检测工作中.
In this article,we introduce a transfer learning-based landslide microseismicity detection model,which can automatically pick up microseismicity occurring on the slopes in more accurate means.The deep learning model is first trained using a huge amount of manually labeled seismic events to obtain a well pre-trained model,then,the pre-trained model is fine-tuned by a small number of manually labeled microseismic events that have occurred on the slope to account for landslide microseismicity detection.The results suggest that our model achieves a rate of 0.884 and 0.91 in recall and precision test using unknown events that occurred on the slope,respectively.The proposed transfer learning-based training procedure not only significantly reduces the demand on the labeled training data on the slope,but also achieves a more robust and accurate model using a small number of integrations when applied to slopes.We open source the main function of the model,which can also be applied to other slopes.
蔡育埼;于子叶
中国北京 100081 中国地震局地球物理研究所中国北京 100081 中国地震局地球物理研究所
迁移学习微地震事件检测深度学习边坡
transfer learningmicroseismic event detectiondeep learningslope
《地震地磁观测与研究》 2024 (2)
20-27,8
基于深度神经网络的体波面波联合反演算法,中央级公益性科研院所基本科研业务费(项目编号:DQJB23R31)
评论