基于EMD-SVD的矿山微震信号降噪方法及其应用OA北大核心CSTPCD
Denoising method and application of mine microseismic signal based on EMD-SVD
为了提高微震监测技术对微震信号分析处理的准确性,充分提取微震信号波形中的有效信息,针对矿山微震信号非平稳、非线性的特点,提出了一种基于经验模态分解(EMD)和奇异值分解(SVD)的联合降噪方法.该方法首先通过EMD分解获得信号的IMF分量,利用相关系数、方差贡献率和相似度对IMF分量进行了优选;然后使用优选后的IMF分量重构一维微震信号时间序列的相空间数据,经过SVD分解后,利用奇异值能量百分比确立了 SVD重构阶数,并根据SVD恢复原理得到了降噪后的一维微震时间序列;最后以山东某矿现场矿山爆破为例,采用不同降噪方法对3类典型微震信号进行了降噪处理,并对其降噪效果进行了对比分析.结果表明,EMD-SVD降噪方法与传统降噪方法相比,其平均信噪比提高了 35%,平均均方根误差降低了 50%,有效剔除了微震信号的噪声分量,保留了信号的特征信息.该研究对分析矿山微震信号、微震事件定位及煤矿动力灾害监测具有重要意义.
To enhance the accuracy of microseismic monitoring technology in the analysis and processing of microseismic signals,and to fully extract effective information from microseismic signal waveforms,a novel denoising method based on empirical mode decomposition(EMD)and singular value decomposition(SVD)is proposed for the non-stationary and nonlinear characteristics of mine microseismic signals.This method initially obtained the intrinsic mode function(IMF)components of the signal through EMD decomposition,and optimized the IMF components using correlation coefficients,variance contribution rates,and similari-ty.Subsequently,the selected IMF components were used to reconstruct the phase space data of one-dimen-sional microseismic signal time series.After decomposition by SVD,the SVD reconstruction order was es-tablished using the percentage of singular value energy,and the denoised one-dimensional microseismic time series was obtained based on the SVD restoration principle.Taking mine blasting in a mine in Shandong as an example,different denoising methods were applied to three types of typical microseismic signals,and their denoising effects were compared and analyzed.The results show that compared with traditional de-noising methods,the EMD-SVD denoising method improves the average signal-to-noise ratio by 35%and reduces the average mean square error by 50%,effectively eliminating noise components in the microseis-mic signal while preserving its characteristic information.This research is significant for analyzing mine mi-croseismic signals,locating microseismic events,and monitoring dynamic disasters in coal mines.
朱权洁;隋龙琨;陈学习;欧阳振华;刘晓辉
华北科技学院应急技术与管理学院,河北 三河 065201华北科技学院矿山安全学院,河北三河 065201
安全科学
矿山安全微震监测技术微震信号降噪经验模态分解奇异值分解
mine safetymicroseismic monitoring techniquemicroseismic signal denoisingempirical mode decompositionsingular value decomposition
《安全与环境工程》 2024 (003)
110-119 / 10
河北省自然科学基金项目(E2023508021);中央引导地方科技发展资金项目(基础研究项目)(216Z5401G);中央高校基本科研业务费专项资金项目(3142021002);河北省省级科技计划资助项目(22375401D);河北省在读研究生创新能力培养资助项目(CXZZSS2023183)
评论