| 注册
首页|期刊导航|安全与环境工程|基于GNSS监测的SSA-SVR模型边坡变形预测

基于GNSS监测的SSA-SVR模型边坡变形预测

任文辉 杨晓华 冯永年 杨玲 魏静

安全与环境工程2024,Vol.31Issue(3):160-169,10.
安全与环境工程2024,Vol.31Issue(3):160-169,10.DOI:10.13578/j.cnki.issn.1671-1556.20221561

基于GNSS监测的SSA-SVR模型边坡变形预测

Slope deformation prediction of SSA-SVR model based on GNSS monitoring

任文辉 1杨晓华 2冯永年 1杨玲 3魏静3

作者信息

  • 1. 中铁建陕西高速公路有限公司,陕西西安 710018
  • 2. 中国铁建投资集团有限公司,广东 珠海 519000
  • 3. 北京交通大学土木建筑工程学院,北京 100044
  • 折叠

摘要

Abstract

Slope deformation prediction is an effective method to study slope stability and early warning.There exists non-stationarity of high slope GNSS monitoring data and the existing noise affects the safety analysis of the slope.We take the ultra-deep cutting slope of Wuhua Highway as a case and propose slope deformation prediction model based on sparrow search algorithm optimized for support vector regression with smooth prior analysis decomposition and singular value decomposition denoising(SPA-SVD-SSA-SVR model).The influence of two data processing methods,namely decomposition and denoising,on the predic-tion results are compared.The results show that the high slope is in a safe state with overall small deforma-tion.The SSA-SVR model demonstrates improved prediction performance.Compared to the traditional SVR model,it reduces mean squared error(MSE)and mean absolute error(MAE)by 8.68%and 3.82%,respectively,for monitoring point G1,and by 11.60%and 3.26%,respectively,for monitoring point G2.Both SPA decomposition and SVD denoising can reduce the non-stationarity and noise impact of GNSS mo-nitoring data on prediction accuracy.However,the prediction accuracy of the single decomposition process is higher than that of the single denoising process.The integrated SPA-SVD-SSA-SVR model,which com-bines decomposition and denoising,shows better prediction performance.It reduces MSE and MAE by 31.06%and 19.59%,respectively,for monitoring point G1,and by 28.59%and 15.03%,respectively,for monitoring point G2.The research results provide new insights into the processing of slope deformation monitoring data and slope safety deformation prediction.

关键词

边坡变形预测/平滑先验分解/奇异值分解/麻雀搜索算法/支持向量机回归

Key words

slope deformation prediction/smoothing prior decomposition/singular value decomposition/sparrow search algorithm/support vector machine

分类

资源环境

引用本文复制引用

任文辉,杨晓华,冯永年,杨玲,魏静..基于GNSS监测的SSA-SVR模型边坡变形预测[J].安全与环境工程,2024,31(3):160-169,10.

基金项目

中国铁建投资集团有限公司科技研发项目(2020-C10) (2020-C10)

安全与环境工程

OA北大核心CSTPCD

1671-1556

访问量0
|
下载量0
段落导航相关论文