|国家科技期刊平台
首页|期刊导航|分析测试学报|高速魔角旋转下基于组合π脉冲的射频驱动重耦同核双量子固体NMR相关实验研究

高速魔角旋转下基于组合π脉冲的射频驱动重耦同核双量子固体NMR相关实验研究OA北大核心CSTPCD

Study of Radio Frequency-driven Recoupling Homonuclear Double-quantum Solid-state NMR Correlation Experiments Based on Com-posite π Pulses at High Magic-angle-spinning Speed

中文摘要英文摘要

该文提出了一种改进固体核磁共振(NMR)实验中射频驱动重耦(RFDR)序列的方法.以组合π脉冲替代传统的单一矩形π脉冲作为RFDR序列的基本构成单元,并选择若干个适用于高速魔角旋转条件的组合π脉冲,在RFDR双量子实验中进行全面研究,通过数值模拟分析了影响RFDR双量子实验性能的两个关键因素——共振偏置和射频场不均匀性,并根据模拟结果确定了性能最优的组合π脉冲.结合六氟硅酸钠和L-组氨酸的一维和二维 19F或 1H固体NMR实验,验证了在高速魔角旋转条件下选择适当的组合π脉冲的RFDR序列的优势.该方法不仅能确保较高的同核双量子激发效率,还能提高激发带宽,并且对射频场不均匀性更加不敏感.稳定高效的RFDR同核双量子相关实验为采用固体NMR分析强自旋耦合体系的核间相互作用提供了重要的技术支持.

This study presents a way to improve the performance of radio frequency-driven recoupling(RFDR)sequences in solid-state nuclear magnetic resonance(NMR)spectroscopy.Traditional RF-DR sequences typically employ single rectangular π pulses,which may prove to be inefficient,espe-cially in experiments under high-speed magic angle spinning(MAS)conditions that have become more popular in recent years.To address this issue,we proposed using composite π pulses to replace the traditional single rectangular π pulses in RFDR sequences.The updated RFDR sequence enables more precise control over nuclei spins and provides better performance in double-quantum(DQ)ex-periments compared to the traditional module based on single rectangular π pulses.Our focus was specifically on the investigation of multiple composite π pulses,which are suitable for use under high-speed MAS conditions.To evaluate the efficacy of DQ excitation of these composite π pulses within the RFDR sequence,we conducted a comprehensive investigation by using numerical simula-tions and experiments.Initially,we analyzed the impact of two critical factors on the performance of RFDR in DQ excitation experiments:resonance offset and radio frequency(RF)field inhomogene-ity.The resonance offset signifies the difference between the nuclei Larmor frequency and the fre-quency of the applied RF field,while the RF field inhomogeneity describes the variations in RF field strength throughout the sample.Through a comparative analysis of outcomes from a single rectangular π pulse and multiple composite π pulses,we identified a promising RFDR sequence based on a com-posite π pulse.Subsequently,this optimized RFDR sequence was integrated into DQ experiments and tested via one-dimensional(1D)and two-dimensional(2D)experiments on 19 F for sodium hexaflu-orosilicate or 1 H for L-histidine.The results confirmed that,under high-speed MAS conditions,the RFDR sequence with appropriate composite π pulses can offer several advantages over the traditional RFDR with single rectangular π pulses.Firstly,it achieves higher efficiency in homonuclear DQ ex-citation,resulting in a significant reduction in experimental time.Secondly,it improves the DQ ex-citation bandwidth,allowing for improved excitation of nuclei across a broader range of chemical shifts.Lastly,it exhibits good tolerance to RF field inhomogeneity,simplifying experimental setup and facilitating extended experimental durations.In summary,this study explored the efficacy of composite π pulses in optimizing RFDR sequences under high-speed MAS.The utilization of compos-ite π pulse in RFDR sequences enhances robustness and efficiency in DQ correlation experiments,which provides crucial technical support for investigating nuclear interactions within strongly coupled spin systems present in diverse solid-state materials.

宋佩君;易迎彦;王秀梅;张正逢

武汉理工大学 理学院,湖北 武汉 430070布鲁克(北京)科技有限公司,北京 100192中国科学院精密测量科学与技术创新研究院,湖北 武汉 430071

化学

固体核磁共振魔角旋转组合脉冲偶极重耦双量子-单量子相关射频驱动重耦(RFDR)

solid-state NMRmagic-angle-spinningcomposite pulsesdipolar recouplingdou-ble-quantum single-quantum correlationradio frequency-driven recoupling

《分析测试学报》 2024 (006)

超高速魔角旋转下测量全质子化膜蛋白中1H-1H长程距离的固体NMR新方法

898-904 / 7

国家自然科学基金(22074153)

10.12452/j.fxcsxb.23121558

评论