基于改进残差网络的XLPE电缆局部放电声纹诊断方法OA北大核心CSTPCD
Diagnosis Method of Voiceprint of Partial Discharge in XPLE Cable Based on Improved ResNet
XLPE电缆是电力系统的重要设备,针对传统的残差网络模型在进行电缆故障诊断时计算量较大、准确率低的问题,提出一种基于改进残差卷积网络的电缆局部放电故障诊断方法.首先通过试验平台对3类典型局部放电故障的声纹时频谱图进行采集和预处理;然后,采用SiLU函数作为激活函数,并在残差块中引入高效信道注意力机制模块,得到改进残差网络模型;最后,利用训练好的模型识别局部放电故障的时频谱图.结果表明,改进残差网络对于XLPE电缆局部放电故障的识别率可达97%以上,与经典深度学习网络和传统机器学习算法相比,具有更优的识别效果.
XLPE cable is an important equipment in the power system.Aiming at the problems of large amount of calculation and low accuracy in the cable fault diagnosis based on traditional residual network(ResNet)model,this paper proposes a cable partial discharge fault diagnosis method based on improved residual convolution network.Firstly,the time-frequency spectrum of three typical partial discharge faults is collected and preprocessed through the test platform.Then,the paper uses the Sigmoid weighted liner unit(Silu)as the activation function,and introduces the efficient channel attention(ECA)mechanism module into the residual block to obtain an improved residual network model.Finally,the trained model is used to identify the time-frequency spectrum of partial discharge fault.The results show that the recognition rate of the improved residual network can reach 97%,which is better than other classical deep learning networks,and is significantly better than the traditional machine learning algorithms.
陈强;李茂峰;秦际明;韦举仁
中国南方电网有限责任公司超高压输电公司百色局,广西 百色 533000
动力与电气工程
声纹时频谱图局部放电残差网络激活函数
voiceprinttime-frequency spectrumpartial dischargeResNetactivation function
《广东电力》 2024 (005)
97-103 / 7
中国南方电网有限责任公司科技项目(CGYKJXM20220153)
评论