| 注册
首页|期刊导航|高电压技术|基于改进YOLOv5-LITE轻量级的配电组件缺陷识别

基于改进YOLOv5-LITE轻量级的配电组件缺陷识别

颜宏文 万俊杰 潘志敏 章健军 马瑞

高电压技术2024,Vol.50Issue(5):1855-1864,10.
高电压技术2024,Vol.50Issue(5):1855-1864,10.DOI:10.13336/j.1003-6520.hve.20220387

基于改进YOLOv5-LITE轻量级的配电组件缺陷识别

Defect Identification of Distribution Components Based on Improved YOLOv5-LITE Lightweight

颜宏文 1万俊杰 1潘志敏 2章健军 2马瑞3

作者信息

  • 1. 长沙理工大学计算机与通信工程学院,长沙 410114
  • 2. 国网湖南超高压变电公司,长沙 410100
  • 3. 长沙理工大学电气与信息工程学院,长沙 410114
  • 折叠

摘要

Abstract

In order to accurately and quickly locate and identify the defects of distribution components,a lightweight defect identification method of distribution components based on improved YOLOv5-LITE is proposed.To make the model easy to deploy to mobile device terminals,this method uses Shufflenetv2 as the backbone network to extract fea-tures,constructs YOLOv5-LITE lightweight neural network model,and removes 1024 convolution and 5×5 Pooling of Shufflenetv2,which is replaced by global average pooling operation to reduce the amount of network parameters and im-prove the speed of model detection.By introducing the 152×152 feature layer,which is conducive to the detection of fine-grained objects,the defect detection of large-,medium-and small-scales is realized.Using deep separable convolu-tion instead of downsampling in PANet architecture makes the network more lightweight.The experimental results show that this method can be adopted to identify three defects:cable separation gasket,cable and insulator falling off and acy-clic insulator.The detection accuracy is 92%,95%,and 95%,respectively.The amount of network parameters is about 1/4 of YOLOv5,and the detection speed is 2 ms/piece.The proposed method has the characteristics of real-time,high accu-racy and light weight.

关键词

目标检测/YOLOv5/ShuffleNetV2/轻量化/配电线路/缺陷识别

Key words

target detection/YOLOv5/ShuffleNetV2/lightweight/distribution line/defect identification

引用本文复制引用

颜宏文,万俊杰,潘志敏,章健军,马瑞..基于改进YOLOv5-LITE轻量级的配电组件缺陷识别[J].高电压技术,2024,50(5):1855-1864,10.

基金项目

国家自然科学基金(51977012) (51977012)

国网湖南电力科技项目(5216A32100AF).Project supported by National Natural Science Foundation of China(51977012),Science and Technology Project of State Grid Hunan Electric Power(5216A32100AF). (5216A32100AF)

高电压技术

OA北大核心CSTPCD

1003-6520

访问量0
|
下载量0
段落导航相关论文