基于FasterNet和YOLOv5改进的玻璃绝缘子自爆缺陷快速检测方法OA北大核心CSTPCD
Rapid Detection Method for Self-exploding Defects in Glass Insulators Based on Improved FasterNet and YOLOv5
为了实现对电力输电线路中绝缘子缺陷实时快速的巡检需求,提出了一种结合 FasterNet-tiny 和YOLOv5-s-v6.1 网络模型改进的缺陷快速检测算法 FasterNet-YOLOv5.首先引入参数量小推理速度更快的FasterNet网络替换原先的CSPDarkNet53主干网络,加快网络的检测速度.然后结合由GhostNetv2网络提出的解耦全连接注意力机制(decoupled fully connected,DFC),在主干特征提取网络中设计了DFC-FasterNet模块,模块中的DFC Attention机制可以在特征提取过程中增大感受野,提升网络的检测精度.最后针对玻璃绝缘子自爆缺陷目标较小和背景较复杂的情况,重新设计Neck模块,提出BiFPN-F特征融合模块,使网络更精确地定位绝缘子缺陷区域.实验结果表明:改进后的算法可以快速精准定位,其均值平均精度(mean average precision,mAP)达到93.3%,相较于改进前提升 5.67%,检测速度达到 45.7 Hz,较改进前提升近 1 倍.同时与最新的 YOLOv8n 和YOLOv7-tiny相比,改进后的FasterNet-YOLOv5在自爆缺陷上的检测精度和速度更具优势,该文所提算法能够更快速地对绝缘子及其自爆缺陷实时定位识别.
In order to realize the real-time and fast inspection of insulator defects in power transmission lines,a fast defect detection arithmetic FasterNet-YOLOv5 is proposed by combining FasterNet-tiny and YOLOv5-s-v6.1 network model improvement.Firstly,a FasterNet network with a small number of parameters and faster reasoning speed is introduced to replace the original CSPDarkNet53 backbone network to speed up the detection speed of the network.Then,the DFC-FasterNet module is designed in the backbone feature extraction network by combining the decoupled fully con-nected(DFC)mechanism proposed by the GhostNetv2 network,and the DFC attention mechanism in the module can increase the receptive field during the feature extraction process to improve the detection accuracy of the network.Finally,for the case of glass insulator self-blast defects with smaller targets and more complex background,the Neck module is redesigned,and the BiFPN-F feature fusion module is proposed to enable the network to more accurately localize the in-sulator defect region.The experimental results show that the improved algorithm can locate quickly and accurately,its mean average precision(mAP)reaches 93.3%,which is improved by 5.67%compared with the pre-improvement,and the detection speed reaches 45.7 Hz,which is nearly one times higher than the pre-improvement.Meanwhile,compared with the latest YOLOv8n and YOLOv7-tiny,the improved FasterNet-YOLOv5 has more advantages in detecting the self-destructive defects in terms of accuracy and speed,and the proposed algorithm can locate and identify insulators and their self-destructive defects in real time more quickly.
邬开俊;徐泽浩;单宏全
兰州交通大学电子与信息工程学院,兰州 730070
缺陷检测BiFPN-FFasterNetYOLOv5sDFC AttentionPConv
defect detectionBiFPN-FFasterNetYOLOv5sDFC AttentionPConv
《高电压技术》 2024 (005)
1865-1876 / 12
甘肃省自然科学基金(23JRRA913);内蒙古自治区重点研发与成果转化计划项目(2023YFSH0043).Project supported by Natural Science Foundation of Gansu Province(23JRRA913),Inner Mongolia Autonomous Region Key R&D and Achievement Trans-formation Program Project(2023YFSH0043).
评论