高模量镁基材料实验和集成计算研究进展OA北大核心CSTPCD
Research progress in experimental and integrated calculations of high modulus magnesium based materials
镁合金由于低密度、高比强度、高阻尼以及良好的导热性等突出优点,广泛应用于航空航天领域,但其低弹性模量限制了其在大型薄壁构件中的可靠应用.本文针对如何提高镁基材料模量性能的问题,简介影响合金模量的主要因素,比较相关计算模型如等应力应变模型、混合定律、Halpin-Tsai模型以及两相复合材料模型的优缺点和适用范围,概括镁基材料模量性能研究的现状与进展,梳理镁基材料模量提升的两大途径以及性能提升机理.基于集成计算材料工程,提出了原子-晶格尺度类高模量铝合金开发和机器学习辅助优化实验设计的高强度高模量镁基材料集成开发策略.
Magnesium alloy is widely used in the aerospace field due to its low density,high specific strength,high damping and good thermal conductivity.However,its low elastic modulus limits its reliable application in large thin-walled components.Aiming at the problem to improve the modulus properties of magnesium-based materials,this paper briefly introduces the main factors affecting the modulus of the alloy,compares the advantages,disadvantages and application scope of relevant calculation models such as equal stress-strain model,rule of mixture,Halpin-Tsai model and two-phase composite model,summarizes the current situation and progress of the research on the modulus properties of magnesium-based materials,and reviews the two major ways of modulus improvement of magnesium-based materials and the mechanism of performance improvement.Based on the integrated computational material engineering,the integrated development strategy of high-strength and high-modulus magnesium-based materials for atomic-lattice scale analogy high-modulus aluminum alloy development and machine learning assisted optimization experimental design is proposed.
李志强;帅川;柳伟;侯华;张高龙;赵宇宏
中北大学 材料科学与工程学院,教育部/山西省共建高性能铝/镁合金材料开发及应用协同创新中心,太原 030051中北大学 材料科学与工程学院,教育部/山西省共建高性能铝/镁合金材料开发及应用协同创新中心,太原 030051||太原科技大学,太原 030024太原科技大学,太原 030024||山西神州航天科技有限公司,山西晋中 030800中北大学 材料科学与工程学院,教育部/山西省共建高性能铝/镁合金材料开发及应用协同创新中心,太原 030051||北京科技大学北京市材料基因工程高精尖创新中心,北京 100083
镁合金镁基复合材料高模量性能集成计算材料工程
magnesium alloymagnesium matrix compositeshigh modulus performanceintegrated computational material engineering
《航空材料学报》 2024 (003)
43-64 / 22
评论