|国家科技期刊平台
首页|期刊导航|中国实用神经疾病杂志|基于GLIM评分的帕金森病患者营养不良风险预测模型构建

基于GLIM评分的帕金森病患者营养不良风险预测模型构建OACSTPCD

A risk prediction model of malnutrition for patients with Parkinson's disease based on GLIM criteria

中文摘要英文摘要

目的 研究预测帕金森病患者营养不良风险的模型,为早期营养干预提供依据.方法 选择郑州大学第二附属医院神经内科2020-01-2022-12收治的229例帕金森病患者为研究对象.收集患者的临床资料并使用全球(营养)领导人发起的营养不良评定(诊断)标准对患者进行营养风险筛查.通过机器学学习的方法构建帕金森病患者营养不良筛查模型.结果 营养不良组患者Hoehn-Yahr分级3~4级患者数量较营养正常组患者数量高,营养不良组患者病程较营养正常组患者时间长,差异均有统计学意义(均P<0.05).Lasso回归模型及多因素Logistic回归分析构建的帕金森病患者营养不良风险预测模型显示:Hoehn-Yahr分级、病程、体重指数、C反应蛋白和白蛋白是帕金森病患者合并营养不良的危险因素.该列线图模型的 C指数为0.837(95%CI:0.787~0.887),受试者工作特征曲线下面积为0.837,显示较好的预测价值.决策曲线分析所示当概率值为2%~79.0%时,使用此模型,患者临床净获益率最高.结论 该列线图模型为有效筛查帕金森病患者营养不良风险提供了一种实用方法,为尽早进行营养干预提供了依据.

Objective To study a model for predicting the risk of malnutrition in patients with Parkinson's disease(PD),and to provide a basis for early nutritional intervention.Methods A total of 229 patients with PD admitted to the Department of Neurology of the Second Affiliated Hospital of Zhengzhou University from January 2020 to December 2022 were enrolled.Clinical data of patients were collected and patients were screened for nutritional risk using Global Leadership Initiative on Malnutrition.A malnutrition screening model for patients with PD was constructed by machine learning.Results The number of patients with Hoehn-Yahr(H-Y)grade 3-4 in the malnutrition group was higher than that in the normal nutrition group,and the course of the disease in the malnutrition group was longer than that in the normal nutrition group,and the differences were statistically significant(all P<0.05).The Lasso regression model and multivariate Logistic regression analysis showed that H-Y grade,course of illness(Course),body mass index(BMI),C-reactive protein(CRP)and albumin(ALB)were risk factors for malnutrition in PD patients.The nomogram model had a C-index of 0.837(95%CI:0.787-0.887)and an area under the receiver operating characteristic(AUC)curve was 0.837,indicating good predictive value.Decision curve analysis showed that when the probability value was 2%-79.0%,the patient had the highest clinical net benefit rate using this model.Conclusion The nomogram provides a practical method for effective screening of malnutrition in Parkinson's patients,and provides a basis for early nutritional intervention.

陈思;杨霄鹏;陈帅;宋晶晶;奚志;白宏英

郑州大学第二附属医院,郑州 河南 450003

临床医学

帕金森病营养不良全球(营养)领导人发起的营养不良评定预测模型危险因素临床净获益率

Parkinson's diseaseMalnutritionGlobal Leadership Initiative on MalnutritionPredictive modelsRisk factorsClinical net benefit rate

《中国实用神经疾病杂志》 2024 (005)

568-572 / 5

河南省医学科技攻关项目(编号:LHGJ20210411)

10.12083/SYSJ.240112

评论