| 注册
首页|期刊导航|红外技术|基于深度学习的管道热图像泄漏识别

基于深度学习的管道热图像泄漏识别

陈秋艳 张新燕 贺敏 田义春 刘宁 郭瑞 王晓辉 游思源 张修坤

红外技术2024,Vol.46Issue(5):522-531,10.
红外技术2024,Vol.46Issue(5):522-531,10.

基于深度学习的管道热图像泄漏识别

Identification of Pipeline Thermal Image Leakage Based on Deep Learning

陈秋艳 1张新燕 2贺敏 3田义春 1刘宁 1郭瑞 1王晓辉 1游思源 1张修坤1

作者信息

  • 1. 山东科技大学 安全与环境工程学院,山东 青岛 266590
  • 2. 山东科技大学 安全与环境工程学院,山东 青岛 266590||山东科技大学 矿山灾害预防控制省部共建国家重点实验室培育基地,山东 青岛 266590||青岛市生产安全火灾事故智能控制工程中心,山东 青岛 266590
  • 3. 山东科技大学 安全与环境工程学院,山东 青岛 266590||烟台哈尔滨工程大学研究院,山东 烟台 264000
  • 折叠

摘要

Abstract

To reduce the difficulty of detecting tiny leakages at multiple leakage points in liquid pipelines,it is necessary to improve the detection accuracy and speed of the leakage points.Bilateral filtering based on nonlinear stationary wavelets is proposed to achieve image noise reduction by building a water circulation pipeline leakage experiment system,changing the sizes and number of the leakage points,changing the temperature of the conveying medium,and applying an infrared thermal imager to monitor the small leakage of the single and complex leakage points.Combined with infrared nondestructive testing technology and a YOLO v4 network model,this study realized the automatic intelligent detection of single and multiple leakage points of liquid pipelines.The results show that compared with the traditional filtering algorithm,the peak signal to noise ratio and structural similarity evaluation indexes of the noise reduction method are improved.The model can quickly and accurately detect and locate single and multiple leakage points of pipelines.The average detection accuracy(mAP)values of the single and multiple leakage points in complex environment reach 0.9822 and 0.98,respectively.Further,the accuracy rates reach 98.3%and 98.36%,and the single frame detection times reach 0.3021 s and 0.3096 s,respectively.This helps realize the identification of leakage points under complex background interference.In comparison with YOLO v3,Faster R-CNN,and SSD 300,the YOLO v4 algorithm has better accuracy,mAP,and t for the detection of single and multiple leakage points and has a higher detection accuracy and detection efficiency.

关键词

输液管道/红外无损检测技术/图像降噪/自动检测/MATLAB

Key words

liquid pipeline/infrared non-destructive testing technology/image noise reduction/automatic detection/MATLAB

分类

计算机与自动化

引用本文复制引用

陈秋艳,张新燕,贺敏,田义春,刘宁,郭瑞,王晓辉,游思源,张修坤..基于深度学习的管道热图像泄漏识别[J].红外技术,2024,46(5):522-531,10.

基金项目

国家自然科学基金(51904170) (51904170)

山东省自然科学基金博士基金(ZR2019BEE041). (ZR2019BEE041)

红外技术

OA北大核心CSTPCD

1001-8891

访问量0
|
下载量0
段落导航相关论文