基于图像融合的高压隔离开关分合闸状态识别OA北大核心CSTPCD
Recognition of High-Voltage Isolation Switch Opening and Closing State Based on Image Fusion
为了解决现有隔离开关分合闸状态识别率较低的问题,提出了一种基于NSST-PCNN-IFVSS的图像融合方法.在对红外和可见光图像的预处理阶段进行图像配准,再采用像素级融合来实现两图像的融合.在融合阶段采用非下采样剪切波变换将红外和可见光图像分解为高频子带图和低频子带图,在高频子带图部分采用脉冲耦合神经网络进行融合,在低频子带图部分采用基于视觉显著特性分割的图像融合方法进行融合,通过非下采样剪切波变换的逆变换将两个子带图像结合起来得到融合后的图.建立融合质量指标评价方案来对比本方案与常见的图像融合方案的效果.对融合后的图像进行像素积分投影算法进行处理,进而实现对高压隔离开关分合闸状态进行识别.通过实验仿真验证了NSST-PCNN-IFVSS(Non Subsampled Shearlet Transform-Pulse Coupled Neural Network-Image Fusion based on Visual Salience Segmentation)的图像融合效果优于常见的 6种融合方法,且图像融合后的识别结果优于单一的可见光图像和红外图像.
To solve the low recognition rate problem of the existing isolation switch state identification,a method of image fusion based on NSST-PCNN-IFVSS is proposed.Image registration is performed in the preprocessing stage of infrared and visible light images;subsequently,pixels and fusion are used to achieve the fusion of the two images.In the fusion stage,the non-subsampled shearlet transform is used to decompose the infrared and visible light images into high-and low-frequency sub-band images.In the high-frequency sub-band image part,a pulse coupled neural network is used for fusion,whereas the image fusion method based on visual saliency segmentation is used for fusion in the low-frequency sub-band image part.The two sub-band images are combined by the inverse transform of the non-subsampled shearlet transform to obtain the fused image.A fusion quality index evaluation scheme is established to compare the effect of this method with common image fusion methods.The fused image is processed by a pixel integration projection algorithm to determine the state of the high-voltage isolation switch.Experimental simulation verifies that the image fusion effect of the non-subsampled shearlet transform-pulse coupled neural network-image fusion based on visual salience segmentation is better than six common fusion methods,and the recognition result after image fusion is better than that of the single visible light image and infrared image.
张靖;单长吉;周丽;李鑫;朱豪
昭通学院 物理与信息工程学院,云南 昭通 657000
计算机与自动化
高压隔离开关图像融合NSST-PCNN-IFVSS图像配准像素积分投影
high voltage isolation switchimage fusionNSST-PCNN-IFVSSimage registrationpixel integral projection
《红外技术》 2024 (005)
539-547 / 9
云南省科技计划项目(202001AP070046).
评论