| 注册
首页|期刊导航|电力系统保护与控制|基于深度学习融合网络的含噪电能质量扰动识别方法

基于深度学习融合网络的含噪电能质量扰动识别方法

王海东 程杉 徐其平 刘烨 王灿

电力系统保护与控制2024,Vol.52Issue(10):11-20,10.
电力系统保护与控制2024,Vol.52Issue(10):11-20,10.DOI:10.19783/j.cnki.pspc.231503

基于深度学习融合网络的含噪电能质量扰动识别方法

Identification of power quality disturbance with noises based on an integrated deep learning network

王海东 1程杉 1徐其平 1刘烨 2王灿1

作者信息

  • 1. 三峡大学电气与新能源学院,湖北 宜昌 443002
  • 2. 国网浙江省电力有限公司嘉兴供电公司,浙江 嘉兴 314000
  • 折叠

摘要

Abstract

A novel method combined with adaptive wavelet threshold noise reduction and deep learning is proposed to improve the accuracy of identifying power quality disturbances in strong-noise environments.First,the noise-containing disturbance signals are noise-reduced by a threshold function algorithm based on an improved peak and score level adaptive thresholding and energy optimization.Then,the residual network is used to extract deep features from the noise-reduced disturbance signals,based on which the bidirectional long short term memory network under the multi-attention mechanism is incorporated to establish temporal feature dependency.This constitutes a framework applicable to the recognition of disturbance signals in a noisy environment.Finally,numerical simulations are carried out on 20 types of disturbance signals in different noise environments.It can be seen from the results that the proposed method has good noise robustness and high recognition accuracy in different noise environments.

关键词

电能质量扰动/自适应小波降噪/残差神经网络/多头注意力/双向长短时记忆网络

Key words

power quality disturbances/adaptive wavelet threshold/residual neural network/multi-headed attention/bidirectional long-short term memory network

引用本文复制引用

王海东,程杉,徐其平,刘烨,王灿..基于深度学习融合网络的含噪电能质量扰动识别方法[J].电力系统保护与控制,2024,52(10):11-20,10.

基金项目

This work is supported by the National Natural Science Foundation of China(No.52107108). 国家自然科学基金项目资助(52107108) (No.52107108)

电力系统保护与控制

OA北大核心CSTPCD

1674-3415

访问量0
|
下载量0
段落导航相关论文