基于最大图像熵Gamma校正估计的图像特征点检测和匹配方法OA北大核心CSTPCD
Image Feature Point Detection and Matching Method Based on Maximum Image Entropy Gamma Correction Estimation
提出一种基于最大图像熵Gamma校正估计的图像特征点检测和匹配方法.通过预处理算法来增强图像的对比度,将其应用于图像特征点的检测和匹配.在预处理阶段,首先采用对数函数对图像进行归一化,根据设定的阈值将图像分为明亮和黑暗分量;然后分别对两个分量自适应地选择不同的参数进行Gamma校正,并且确定使其熵最大化的校正参数为每个分量的最佳参数;最后将上述参数应用于Gamma校正生成对应原始图像明亮和黑暗区域的矫正图,并进行融合生成增强的图像.对预处理完的图…查看全部>>
An image feature point detection and matching method based on maximum image entropy Gamma correction estimation is proposed.The contrast of the image is enhanced by a preprocessing algorithm,which is applied to the detection and matching of image feature points.In the preprocessing stage,the image is first normalized using a logarithmic function,and divided into bright and dark components according to a set threshold;then different parameters are adaptively …查看全部>>
苑朝;赵亚冬;张耀;徐大伟;苑晶;翟永杰
华北电力大学 自动化系,河北保定 071003华北电力大学 自动化系,河北保定 071003华北电力大学 自动化系,河北保定 071003华北电力大学 自动化系,河北保定 071003||中国科学院 自动化研究所复杂系统管理与控制国家重点实验室,北京 100190南开大学人工智能学院,天津 300071华北电力大学 自动化系,河北保定 071003
机器视觉特征点图像熵自适应Gamma校正匹配效果
machine visionfeature pointimage entropyadaptiveGamma correctionmatching effect
《计量学报》 2024 (5)
646-653,8
国家自然科学基金联合基金重点支持项目(U21A20486)中国科学院自动化研究所复杂系统管理与控制国家重点实验室开放课题(20220102)中央高校基本科研业务费专项资金(2023JC006)
评论