集美大学学报(自然科学版)2024,Vol.29Issue(2):152-161,10.DOI:10.19715/j.jmuzr.2024.02.07
利用SE-GPR模型对甲醇/柴油混合燃料柴油机性能的预测
Performance Prediction of Methanol/Diesel Blended Diesel Engine Based on SE-GPR Model
摘要
Abstract
In order to efficiently and accurately predict diesel engine economy and emission parameters,based on the experimental data of the 4190 type marine diesel engine and boundary parameters,an AVL-BOOST simulation model for diesel engines utilizing methanol/diesel blended fuels was established,and a data-set for predicting effective fuel consumption and NOx emissions was created by using this model,incorporating four operational parameters:methanol blending ratio,exhaust gas recirculation(EGR)rate,injection advance angle,and intake pressure.The dataset was employed to train Gaussian process regression(GPR)models with five different kernel functions.Finally,the best-performing squared exponential Gaussian process regression(SE-GPR)model was compared with AVL-BOOST simulation data and diesel engine experimental data.The results showed that the SE-GPR model achieves a correlation of over 99%for both effective fuel consumption and NOx emissions when the dataset contains 180 data sets,with root mean square error(RMSE)values of 1.859,0.344 5,and mean absolute error(MAE)values of 0.954,0.248 9.Moreover,compared to AVL-BOOST simulation experiments,the SE-GPR model exhibits a better fit to the experimental data.关键词
船用柴油机/甲醇/高斯过程回归/平方指数核函数/性能预测Key words
marine diesel engine/methanol/Gaussian process regression/squared exponential kernel/per-formance prediction分类
交通工程引用本文复制引用
范金宇,才正,黄朝霞,杨晨曦,李品芳,黄加亮..利用SE-GPR模型对甲醇/柴油混合燃料柴油机性能的预测[J].集美大学学报(自然科学版),2024,29(2):152-161,10.基金项目
福建省自然科学基金项目(2022J01812,2021J01849) (2022J01812,2021J01849)
福建省教育厅项目(JAT210237) (JAT210237)