基于U-Net变体的医学图像分割算法综述OA北大核心CSTPCD
Review of Medical Image Segmentation Algorithms Based on U-Net Variants
U-Net简单高效的网络结构,被广泛应用于医学图像分割任务中,学者们针对U-Net结构进行了很多的研究和改进.基于U-Net网络结构的改进方法从以下方面进行归纳总结:总结了U-Net网络在医学图像分割领域的关键挑战;归纳了常用于U-Net网络的医学图像数据集格式及特点;重点总结U-Net和U-Net变体算法六大改进机制:跳跃连接机制、生成对抗网络、残差连接机制、3D-UNet、Transformer机制、密集连接机制.最后,探讨六大改进机制与常用医学数据之间的关系,并指出未来改进思路和方向,激发U-Net在医学图像分割的无限潜力.
The simple and efficient network structure of U-Net is widely used in medical image segmentation,and many scholars have made various researches on the U-Net structure.This paper elucidates in the following:firstly,the paper summarizes the key challenges of the U-Net network in the field of medical image segmentation;next,it elaborates the formats and characteristics of medical image datasets that are commonly used in the U-Net network;then,it summarizes the six improvement mechanism of U-Net:skip connection mechanism,generative adversarial network,residual connec-tion mechanism,3D-UNet,Transformer mechanism,and dense connecting mechanism.Finally,the paper discusses the rela-tionship between these improvement mechanisms and commonly used medical data formats,and points out the ideas and directions for future improvement,so as to stimulate the unlimited potential of U-Net in medical image segmentation.
崔珂;田启川;廉露
北京建筑大学 电气与信息工程学院,北京 100044
计算机与自动化
U-Net变体医学图像分割语义分割深度学习改进机制
U-Net variantsmedical image segmentationsemantic segmentationdeep learningimproved mechanism
《计算机工程与应用》 2024 (011)
32-49 / 18
北京建筑大学研究生教育教学质量提升项目(J2022012);北京建筑大学教育教学研究项目(Y2130);北京建筑大学混合式课程建设项目(YC23019).
评论