| 注册
首页|期刊导航|计算机工程与应用|基于特征交互结构的弱光目标检测

基于特征交互结构的弱光目标检测

麦锦文 李浩 康雁

计算机工程与应用2024,Vol.60Issue(11):224-232,9.
计算机工程与应用2024,Vol.60Issue(11):224-232,9.DOI:10.3778/j.issn.1002-8331.2302-0051

基于特征交互结构的弱光目标检测

Low-Light Object Detection Based on Feature Interaction Structure

麦锦文 1李浩 1康雁2

作者信息

  • 1. 云南大学 信息学院,昆明 650504||云南省智慧旅游工程研究中心,昆明 650504
  • 2. 云南省智慧旅游工程研究中心,昆明 650504||云南大学 软件学院,昆明 650504
  • 折叠

摘要

Abstract

Aiming at the problem that the current mainstream and advanced object detection algorithms have low detec-tion accuracy in low-light scenes,it is analyzed that the low-light image weakens the local correlation induction bias that the traditional convolutional neural network relies on,and introduces the Swin Transformer stage with excellent modeling ability for global features to achieve global attention and enhance the amount of feature information.The global attention is combined with local convolution to extract the features of low-light image in parallel,and a feature interaction structure(FIS)is proposed.Through the carefully designed secondary interaction mode,local and global information can be effectively analyzed,utilized and combined.The interactive parallel dual-stream backbone network FISNet is constructed based on the FIS stack,which realizes the deep fusion of the two types of features,and provides a hierarchical feature structure that is very important for intensive predictive tasks.FISNet has achieved 40.6 AP on the low-light image data set ExDark,and has achieved+0.5~2.9 AP detection accuracy improvement compared with the benchmark model such as EfficientNet,which has good application in low-light object detection scenarios.

关键词

弱光图像/目标检测/全局特征/特征交互结构

Key words

low-light images/object detection/global features/feature interaction structure

分类

信息技术与安全科学

引用本文复制引用

麦锦文,李浩,康雁..基于特征交互结构的弱光目标检测[J].计算机工程与应用,2024,60(11):224-232,9.

基金项目

国家自然科学基金(61762092) (61762092)

云南省重大科技专项(202002AD080047,202202AE090019,202202AD080007). (202002AD080047,202202AE090019,202202AD080007)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量7
|
下载量0
段落导航相关论文