| 注册
首页|期刊导航|计算机工程与应用|改进YOLOv5的智慧课堂人脸检测算法

改进YOLOv5的智慧课堂人脸检测算法

钟源 袁家政 李鸿天 刘宏哲 徐成

计算机工程与应用2024,Vol.60Issue(11):251-257,7.
计算机工程与应用2024,Vol.60Issue(11):251-257,7.DOI:10.3778/j.issn.1002-8331.2304-0352

改进YOLOv5的智慧课堂人脸检测算法

Intelligent Classroom Face Detection Algorithm with Improved YOLOv5

钟源 1袁家政 2李鸿天 1刘宏哲 1徐成1

作者信息

  • 1. 北京联合大学 北京市信息服务工程重点实验室,北京 100101||北京联合大学 脑与认知智能北京实验室,北京 100101
  • 2. 北京开放大学 科学技术学院,北京 100081
  • 折叠

摘要

Abstract

The intelligent classroom is a popular application scenario in the field of artificial intelligence.This paper pro-poses a face detection algorithm based on improved YOLOv5,named YOLOv5-SASA,to address the issues of missed or false detection caused by small or occluded faces in images captured by cameras located far away or at an angle.The algo-rithm consists of three parts.Firstly,the CSPDarknet53 network is utilized in the backbone layer,and the BasicRFB module is used in the final spatial pooling layer to enhance the network's feature extraction ability.Secondly,the NWD loss function is employed to improve the model's robustness in detecting small targets.Thirdly,the independent self-attention mecha-nism module SASA is introduced in the head layer to address the issue of face occlusion and reduce the model's param-eter count.Finally,the improved YOLOv5 network is optimized by reducing the number of neurons in the middle layer channels and adjusting the learning rate to avoid overfitting.Experimental results demonstrate that the proposed method outperforms the original network in the easy,medium,and hard levels of the WiderFace validation set,achieving accuracies of 97.5%,96.3%,and 86.5%,respectively,which effectively improves the accuracy of face detection in classroom scenarios.

关键词

智慧课堂/人脸检测/YOLOv5/独立自注意力机制

Key words

smart classroom/face detection/YOLOv5/stand-alone self-attention

分类

信息技术与安全科学

引用本文复制引用

钟源,袁家政,李鸿天,刘宏哲,徐成..改进YOLOv5的智慧课堂人脸检测算法[J].计算机工程与应用,2024,60(11):251-257,7.

基金项目

国家自然科学基金(62171042,62102033,62006020) (62171042,62102033,62006020)

北京市重点科技项目(KZ202211417048) (KZ202211417048)

北京市属高等学校高水平科研创新团队建设支持计划项目(BPHR20220121) (BPHR20220121)

北京市自然科学基金(4232026) (4232026)

协同创新中心(CYXC2203). (CYXC2203)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文