| 注册
首页|期刊导航|计算机工程与应用|自编码模块化增强非负矩阵分解社区检测算法

自编码模块化增强非负矩阵分解社区检测算法

朱玉龙 刘建忠 张寅宝 张欣佳 宋勇成 刘思聪 王雅博

计算机工程与应用2024,Vol.60Issue(11):258-267,10.
计算机工程与应用2024,Vol.60Issue(11):258-267,10.DOI:10.3778/j.issn.1002-8331.2305-0108

自编码模块化增强非负矩阵分解社区检测算法

Community Detection Algorithm with Autoencoding-Like Modular Enhanced Non-Negative Matrix Factorization

朱玉龙 1刘建忠 1张寅宝 1张欣佳 1宋勇成 1刘思聪 1王雅博1

作者信息

  • 1. 郑州大学 地球科学与技术学院,郑州 450000
  • 折叠

摘要

Abstract

Community detection has been one of the key research directions in network analysis.Most of the current net-work community detection algorithms mainly use the structural information of the network to adopt a greedy algorithm to maximize a certain indicator,which cannot fully consider the node feature information,edge weight,and network commu-nity relationship asymmetry.To address this situation,this paper proposes an autoencoder-like modularity nonnegative matrix factorization(AMNMF)community detection algorithm.The algorithm expands the depth of non-negative matrix factorization by using an encoder-like structure,and introduces modularity and graph regularizer into the objective function optimization process of non-negative matrix factorization to fully mine the node and community structure information in the network.The problem of community relationship imbalance is solved by adding orthogonal constraints to the middle layer of the encoder.Experiments on multiple real networks show that:AMNMF is an effective NMF extension algorithm that uses node feature information and network structure information.Compared with the best results of baseline algorithms,it achieves an improvement of about 15%to 122%,and can accurately and effectively complete the community detection task.

关键词

非负矩阵分解/社区检测/自编码/模块化

Key words

nonnegative matrix decomposition/community testing/autoencoding/modular

分类

信息技术与安全科学

引用本文复制引用

朱玉龙,刘建忠,张寅宝,张欣佳,宋勇成,刘思聪,王雅博..自编码模块化增强非负矩阵分解社区检测算法[J].计算机工程与应用,2024,60(11):258-267,10.

基金项目

国家社科重大项目基金(20&ZD138). (20&ZD138)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文