单向阀微弱内泄漏故障征提取与模式识别研究OA北大核心CSTPCD
Research on Feature Extraction and Pattern Recognition of Tiny Internal Leakage of Check Valve
单向阀被广泛应用于工程机械、农业机械、军事车辆液压系统中,泄漏是单向阀的常见故障.本文提出了一种基于时频分解的多源多域、多尺度特征提取与机器学习的单向阀微弱内泄漏故障诊断方法.对 4 类微弱内泄漏故障的振动信号和压力信号进行经验模态分解;采用时域、频域以及时频域的奇异值、波形因子、熵值等方法进行特征提取并构造故障特征向量;基于粒子群-支持向量机进行单向阀内泄漏故障模式识别.实验结果表明该方法能有效地检测单向阀内泄漏,模式识别准确率达到 90%以上.本文为单向阀内泄漏量预测研究奠定了基础,具有较好的工程应用前景.
Check valves are widely used in hydraulic systems of construction machinery,agricultural machinery and military vehicles,the leakage is a common fault of check valves.This paper proposes a fault diagnosis method of check valve tiny internal leakage based on multi-source,multi-domain,multi-scale feature extraction and machine learning.First of all,the empirical mode decomposition(EEMD)is performed on the vibration signals and pressure signals of the four types of leakage failures.Secondly,the singular value,form factor,entropy and other methods from time domain,frequency domain and time-frequency domain are used to extract features and construct fault feature vector.Finally,the particle swarm-support vector machine algorithm are adopted to classify the leakage fault patterns.Experimental results show that the method can effectively detect leakage and the pattern recognition accuracy of leakage is over 90%.This paper laid a foundation for the research on the leakage rate prediction of the internal leakage of check valves,which has a good engineering application prospect.
熊力;刘宁;童成彪;程军圣
湖南农业大学机电工程学院,长沙 410128湖南大学机械与运载工程学院,长沙 410082
机械工程
单向阀内泄漏经验模态分解支持向量机模式识别
check valvesinternal leakageempirical mode decompositionsupport vector machinespattern recognition
《机械科学与技术》 2024 (005)
756-764 / 9
湖南省自然科学基金项目(2020JJ4045)与湖南省重点研发计划(2022NK2028)
评论