| 注册
首页|期刊导航|机械科学与技术|数控机床电动主轴WPD-TSNE-SVM模型故障诊断

数控机床电动主轴WPD-TSNE-SVM模型故障诊断

李坤宏 江桂云 朱代兵

机械科学与技术2024,Vol.43Issue(5):832-836,5.
机械科学与技术2024,Vol.43Issue(5):832-836,5.DOI:10.13433/j.cnki.1003-8728.20220292

数控机床电动主轴WPD-TSNE-SVM模型故障诊断

Fault Diagnosis of CNC Machine Tool Electric Spindle with WPD-TSNE-SVM Model

李坤宏 1江桂云 2朱代兵3

作者信息

  • 1. 重庆工业职业技术学院机械工程与自动化学院,重庆 401120
  • 2. 重庆大学机械与运载工程学院,重庆 400030
  • 3. 重庆红江机械有限责任公司,重庆 402162
  • 折叠

摘要

Abstract

In order to improve the fault diagnosis efficiency of motorized spindle of NC machine tool,a WPD-TSNE-SVM combined model was designed.The main shaft vibration signal is decomposed by using the wavelet packet method,and the dimensionality reduction process of sample set TSNE is completed,and the fault classification of reconstructed features is completed via SVM.The mixed feature space vector of NC machine tool spindle signal was constructed,and the fault diagnosis was analyzed.The results show that the training sample data of TSNE method form regular distribution characteristics,and nonlinear SVM multi-fault classifier is used to achieve the accurate fault classification of wavelet packet mixed features.The nonlinear SVM diagnosis method based on the radial basis kernel function can achieve the higher accuracy.This method can diagnose the running faults of bearings,obtain higher maintenance efficiency,and ensure the running stability of CNC machine tool spindle.

关键词

数控机床/电动主轴/故障诊断/小波包分解

Key words

CNC machine tool/electric spindle/fault diagnosis/wavelet packet decomposition

分类

机械制造

引用本文复制引用

李坤宏,江桂云,朱代兵..数控机床电动主轴WPD-TSNE-SVM模型故障诊断[J].机械科学与技术,2024,43(5):832-836,5.

基金项目

重庆市科技计划(应用开发重大)(cstc2015yykfC40001) (应用开发重大)

机械科学与技术

OA北大核心CSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文