|国家科技期刊平台
首页|期刊导航|江西农业学报|黄棕壤性水稻土有机质含量高光谱反演研究

黄棕壤性水稻土有机质含量高光谱反演研究OACSTPCD

Hyperspectral Inversion of Organic Matter Content in Yellow-Brown Paddy Soil

中文摘要英文摘要

以黄棕壤性水稻土为研究对象,利用ASD FieldSpec® 4地物波谱仪获取土壤高光谱反射率曲线,分析土壤有机质(SOM)含量的分布形态和高光谱特征,基于原始光谱(R)、一阶微分(FD)、二阶微分(SD)、倒数的对数(LR)、倒数一阶微分(FDR)和对数一阶微分(FDL)这6种光谱数据,分别建立了黄棕壤性水稻土SOM含量偏最小二乘回归模型(PLSR)、支持向量机模型(SVM)和BP神经网络模型(BPNN),并比较分析了这3种模型预测精度的差异.结果表明:(1)SOM含量与原始光谱反射率呈弱相关关系,经FD处理后,光谱曲线特征突出明显,光谱FD、SD、FDR和FDL变换能有效提升光谱反射率与SOM含量的相关性.(2)PLSR、SVM和BPNN模型对SOM含量低值(1.98%)的预测效果均较差;数理统计有助于模型精度的评价.(3)SVM模型的预测效果整体优于PLSR和BPNN模型;光谱FD变换的SVM模型对SOM含量的预测效果最好,其验证集的R2、RMSE和RPD分别为0.902、0.257和2.287,可为实现快速、准确地测定黄棕壤性水稻土SOM含量提供新的模型参考和技术思路.

The yellow-brown paddy soil was taken as the research object,and the soil hyperspectral reflectance curve was obtained by the ASD FieldSpec® 4 spectrophotometer.The characteristics of soil organic matter content(SOM)and hyperspectral characteristics in the study area were analyzed.Based on six spectral data,including original spectrum(R),first-order differentiation(FD),second-order differentiation(SD),logarithm of reciprocal(LR),first-orderderivative of reciprocal(FDR)and first-order differentiation of logarithm(FDL),partial least squares regression models(PLSR),support vector machine models(SVM)and BP neural network models(BPNN)were established for SOM content predicting in yellow-brown paddy soil.The accuracy of the model was compared.The results show that:(1)there is a weak correlation between SOM content and original spectral reflectance.After FD treatment,the spectral curve features are prominent,the spectral FD,SD,FDR and FDL transformations can effectively improve the correlation between spectral reflectance and SOM content.(2)SVM and BP models have poor predictive performance for low SOM content(1.98%).Mathematical statistics can help evaluate model accuracy.(3)The SVM model has better predictive performance than PLSR and BPNN models.PLSR.The SVM model for spectral FD transformation has the best predictive performance for SOM content,and R2,RMSE and RPD are 0.902,0.257 and 2.287.The results of this study can provide new model references and technical ideas for the rapid and accurate determination of SOM content in yellow-brown paddy soil.

陈浩峰;方彦奇;赵国凤;黄岩;杨奎;彭江英;梁森

江苏省航空对地探测与智能感知工程研究中心,江苏 南京 210049||江苏省地质勘查技术院,江苏 南京 210049

农业科学

土壤有机质光谱反射率光谱变换模型精度黄棕壤水稻土

Soil organic matterSpectral reflectanceSpectral transformationModel accuracyYellow-brown paddy soil

《江西农业学报》 2024 (004)

59-66 / 8

江苏省地质勘查基金(苏财资环[2022]27号);江苏省地矿局科研项目(2021KY14、2020KY10);江苏省地质勘查技术院科技基金(20200411K2K).

10.19386/j.cnki.jxnyxb.2024.04.010

评论