| 注册
首页|期刊导航|矿业科学学报|基于IPSO-LSTM的井下动目标位置预测实验研究

基于IPSO-LSTM的井下动目标位置预测实验研究

王红尧 房彦旭 吴钰晶 吉正平 赫海全 鲜旭红

矿业科学学报2024,Vol.9Issue(3):393-403,11.
矿业科学学报2024,Vol.9Issue(3):393-403,11.DOI:10.19606/j.cnki.jmst.2024.03.008

基于IPSO-LSTM的井下动目标位置预测实验研究

Position prediction of underground moving targets in mines based on IPSO-LSTM

王红尧 1房彦旭 1吴钰晶 2吉正平 1赫海全 3鲜旭红3

作者信息

  • 1. 中国矿业大学(北京)机械与电气工程学院,北京 100083
  • 2. 安标国家矿用产品安全标志中心有限公司,北京 100013
  • 3. 窑街煤电集团有限公司,甘肃兰州 730084
  • 折叠

摘要

Abstract

Improving the positioning accuracy of underground personnel can not only strengthen mine safety monitoring,but also increase the speed of rescue,thus ensuring the life safety of underground per-sonnel to the maximum extent.This paper proposes a positioning model based on IPSO-LSTM for position prediction of underground moving targets in response to the problem of existing ranging algorithms which are affected by the on-site environment,resulting in insufficient positioning accuracy.This article uses LSTM to build a fingerprint positioning model.It collects distance information through the UWB wireless module to build a distance-position fingerprint relationship database,which is used to train the PSO-LSTM model.Then we use the trained model to predict target trajectories.We compared four improvement strategies on PSO including random initialization of population position by chaotic mapping,nonlinear in-ertia weight reduction and fitness function optimization.Experiments show that the improved PSO optimiza-tion algorithm in this paper exhibit fast convergence speed and good robustness.In order to verify the positio-ning effect of IPSO-LSTM,we compared the IPSO-LSTM model with the Chan algorithm,PSO-LSTM model,LSTM neural network,SSA-LSTM model and GWO-LSTM.The average positioning error is used as the evalu-ation index.The results show that the average positioning error of the IPSO-LSTM positioning model proposed in this study is 30mm,which is 76%higher than the traditional Chan algorithm,49%higher than the LSTM,and 24%higher than the PSO-LSTM model.In order to reduce large local errors,we used median filtering to process input information,further improving positioning accuracy.This study offers references for improving the accuracy and stability of the existing underground moving target positioning system.

关键词

井下动目标/改进的粒子群优化算法/IPSO-LSTM模型/平均定位误差

Key words

underground moving target/improved particle group optimization algorithm/IPSO-LSTM model/average positioning error

分类

矿业与冶金

引用本文复制引用

王红尧,房彦旭,吴钰晶,吉正平,赫海全,鲜旭红..基于IPSO-LSTM的井下动目标位置预测实验研究[J].矿业科学学报,2024,9(3):393-403,11.

基金项目

北京市优秀青年骨干技术人才(2015000020124G120) (2015000020124G120)

中国矿业大学(北京)校级重点教改项目(J20ZD16) (北京)

矿业科学学报

OA北大核心CSTPCD

2096-2193

访问量0
|
下载量0
段落导航相关论文