|国家科技期刊平台
首页|期刊导航|矿业科学学报|基于IPSO-LSTM的井下动目标位置预测实验研究

基于IPSO-LSTM的井下动目标位置预测实验研究OA北大核心CSTPCD

Position prediction of underground moving targets in mines based on IPSO-LSTM

中文摘要英文摘要

提升井下人员定位精度能够加强矿山安全监测,最大程度保障井下人员的生命安全.针对现有测距类算法受现场环境影响致使定位精度不足的问题,提出一种基于IPSO-LSTM的定位模型,应用于井下动目标的位置预测.采用LSTM构建指纹定位模型,通过UWB无线模块采集距离信息以构建距离-位置指纹关系数据库,利用数据库对PSO-LSTM模型进行训练,最后将训练好的模型进行目标轨迹预测.为比较不同改进策略对PSO的提升效果,对比了混沌映射随机初始化种群位置、非线性惯性权重递减、非对称优化学习因子和适应度函数优化4种改进策略,实验证明改进的PSO优化算法收敛速度快、鲁棒性好.为验证IPSO-LSTM的定位效果,以平均定位误差作为评价指标,将IPSO-LSTM模型与Chan算法、PSO-LSTM模型、LSTM神经网络、SSA-LSTM模型和GWO-LSTM进行对比,结果显示,IPSO-LSTM定位模型的平均定位误差为30 mm,相对传统Chan算法、LSTM、PSO-LSTM模型分别提升了 76%、49%、24%.为降低局部误差偏大的现象,采用中值滤波对输入信息处理,进一步提升了定位精度.研究对进一步提高现有井下动目标定位系统的精度和稳定性具有重要意义和参考价值.

Improving the positioning accuracy of underground personnel can not only strengthen mine safety monitoring,but also increase the speed of rescue,thus ensuring the life safety of underground per-sonnel to the maximum extent.This paper proposes a positioning model based on IPSO-LSTM for position prediction of underground moving targets in response to the problem of existing ranging algorithms which are affected by the on-site environment,resulting in insufficient positioning accuracy.This article uses LSTM to build a fingerprint positioning model.It collects distance information through the UWB wireless module to build a distance-position fingerprint relationship database,which is used to train the PSO-LSTM model.Then we use the trained model to predict target trajectories.We compared four improvement strategies on PSO including random initialization of population position by chaotic mapping,nonlinear in-ertia weight reduction and fitness function optimization.Experiments show that the improved PSO optimiza-tion algorithm in this paper exhibit fast convergence speed and good robustness.In order to verify the positio-ning effect of IPSO-LSTM,we compared the IPSO-LSTM model with the Chan algorithm,PSO-LSTM model,LSTM neural network,SSA-LSTM model and GWO-LSTM.The average positioning error is used as the evalu-ation index.The results show that the average positioning error of the IPSO-LSTM positioning model proposed in this study is 30mm,which is 76%higher than the traditional Chan algorithm,49%higher than the LSTM,and 24%higher than the PSO-LSTM model.In order to reduce large local errors,we used median filtering to process input information,further improving positioning accuracy.This study offers references for improving the accuracy and stability of the existing underground moving target positioning system.

王红尧;房彦旭;吴钰晶;吉正平;赫海全;鲜旭红

中国矿业大学(北京)机械与电气工程学院,北京 100083安标国家矿用产品安全标志中心有限公司,北京 100013窑街煤电集团有限公司,甘肃兰州 730084

矿山工程

井下动目标改进的粒子群优化算法IPSO-LSTM模型平均定位误差

underground moving targetimproved particle group optimization algorithmIPSO-LSTM modelaverage positioning error

《矿业科学学报》 2024 (003)

393-403 / 11

北京市优秀青年骨干技术人才(2015000020124G120);中国矿业大学(北京)校级重点教改项目(J20ZD16)

10.19606/j.cnki.jmst.2024.03.008

评论