基于粒子群遗传算法的纱线生产过程参数反演OACSTPCD
Yarn production parameter inversion based on particle swarm genetic algorithm
针对传统纱线质量的正演、反演模型中存在收敛速度慢、精度低等问题,以及标准粒子群算法存在陷入局部极值的缺陷,提出一种粒子群遗传混合算法.使用该算法优化BP神经网络的权值和阈值并建立纱线条干正演模型.在此基础上,以纱线条干CV值为对象构建了粒子群遗传算法反演模型;使用历史生产数据对生产过程参数进行反演.结果表明:各生产过程参数反演结果的平均相对误差均低于4%.认为:该反演方法具有较高的可行性与准确性.
In order to solve the problems of slow convergence and low precision in the traditional forward and inversion models of yarn quality,and the defect of local extremum in standard particle swarm optimization algorithm,a particle swarm genetic hybrid algorithm was proposed.The algorithm was used to optimize the weights and thresholds of BP neural network and establish the forward yarn evenness model.On this basis,the inverse model of particle swarm genetic algorithm was constructed based on the CV value of yarn evenness.Historical production data was used to inverse production parameters.The results showed that the average relative error of the inversion results of each production parameter was kept below 4%.It is considered that the inversion method is feasible and accurate.
梁棋;张立杰
新疆大学,新疆乌鲁木齐,830017
轻工业
粒子群算法遗传算法生产过程参数反演纱线条干BP神经网络
particle swarm optimizationgenetic algorithmproduction parameter inversionyarn evennessBP neural network
《棉纺织技术》 2024 (006)
1-7 / 7
新疆维吾尔自治区科技重大专项(2022A01008-1)
评论