| 注册
首页|期刊导航|南方电网技术|基于相关特征-多标签级联提升森林的电网虚假数据注入攻击定位检测

基于相关特征-多标签级联提升森林的电网虚假数据注入攻击定位检测

席磊 田习龙 余涛 程琛

南方电网技术2024,Vol.18Issue(5):39-50,61,13.
南方电网技术2024,Vol.18Issue(5):39-50,61,13.DOI:10.13648/j.cnki.issn1674-0629.2024.05.005

基于相关特征-多标签级联提升森林的电网虚假数据注入攻击定位检测

Locational Detection of False Data Injection Attack in Power Grid Based on Relevant Features Multi-Label Cascade Boosting Forest

席磊 1田习龙 2余涛 3程琛2

作者信息

  • 1. 三峡大学电气与新能源学院,湖北 宜昌 443002||三峡大学梯级水电站运行与控制湖北省重点实验室,湖北 宜昌 443002
  • 2. 三峡大学电气与新能源学院,湖北 宜昌 443002
  • 3. 华南理工大学电力学院,广州 510640
  • 折叠

摘要

Abstract

False data injection attack seriously endanger the safety and stability of the power grid operations.Due to the high dimen-sion and complex characteristics of the electricity measurement data,the attack locational detection accuracies of the existing methods are insufficient.For this reason,a false data injection attack locational detection method based on relevant features multi-label cascade boosting forest is proposed to locate the attacked position of the power grid.The proposed method enhances the fitting ability of the multi-label cascade forest processing the complex electricity measurement data by incorporating the extreme gradient boosting algorithm,so as to identify the abnormal state variables of each bus.Furthermore,the"relevant features"algorithm is integrated to extract the highly informative features from the original electricity measurement data to improve the generalization ability of the multi-label cascade forest,so as to obtain more accurate location detection.The simulation results on IEEE 14-bus and IEEE 57-bus test systems verify the effectiveness of the proposed method,and compared with many other methods,the proposed method has better ac-curacy,precision,sensitivity and F1-score.

关键词

虚假数据注入攻击/相关特征/多标签级联森林/极端梯度提升

Key words

false data injection attack/relevant features/multi-label cascade forest/extreme gradient boosting

分类

动力与电气工程

引用本文复制引用

席磊,田习龙,余涛,程琛..基于相关特征-多标签级联提升森林的电网虚假数据注入攻击定位检测[J].南方电网技术,2024,18(5):39-50,61,13.

基金项目

国家自然科学基金资助项目(52277108). Supported by the National Natural Science Foundation of China(52277108). (52277108)

南方电网技术

OA北大核心CSTPCD

1674-0629

访问量0
|
下载量0
段落导航相关论文