| 注册
首页|期刊导航|南京林业大学学报(自然科学版)|基于EMD和CatBoost算法的改进时间序列模型

基于EMD和CatBoost算法的改进时间序列模型

赵凌霄 李智扬 屈磊磊

南京林业大学学报(自然科学版)2024,Vol.48Issue(3):268-274,7.
南京林业大学学报(自然科学版)2024,Vol.48Issue(3):268-274,7.DOI:10.12302/j.issn.1000-2006.202205005

基于EMD和CatBoost算法的改进时间序列模型

Improved time series models based on EMD and CatBoost algorithms—taking PM2.5 prediction of Dalian City as an example

赵凌霄 1李智扬 2屈磊磊3

作者信息

  • 1. 大连海洋大学海洋与土木工程学院,辽宁 大连 116023||复旦大学大气与海洋科学系,上海 200438
  • 2. 重庆大学土木工程学院,重庆 400044
  • 3. 大连海洋大学信息工程学院,辽宁 大连 116023
  • 折叠

摘要

Abstract

[Objective]The study aims to address the problem of low accuracy in traditional PM2.5 concentration time series prediction,and to reduce the impact of nonlinearity,high noise,instability and volatility on the prediction of PM25 time series,to predict PM2.5 concentration more accurately.[Method]The haze PM25 data of Dalian City from January 1,2014 to January 31,2022 was used as an example.In this study,a hybrid machine learning time series model with the combination of empirical modal decomposition(EMD),classification boosting(CatBoost)and autoregressive integrated moving average model(ARIMA)was proposed.It was compared with the traditional autoregressive model(AR),ARIMA and the hybrid model with only the EMD method.[Result]The hybrid model EMD-CatBoost-ARIMA improved the root mean square error(RMSE)of the original sequence by 20.76%,the mean absolute error(MAE)by 17.40%,and the theil inequality coefficient(TIC)by 29.17%.[Conclusion]For reconstructed sequences with high entropy values,the EMD decomposition method and CatBoost algorithm can significantly improve the prediction performance of PM25 time series models.Compared with the traditional time series models,the EMD-CatBoost-ARIMA model has higher performance in PM2 5 concentration prediction.

关键词

PM2.5浓度/经验模态分解(EMD)/时间序列模型/混合模型/CatBoost算法/机器学习/大连市

Key words

PM25 concentration/empirical modal decomposition(EDM)/time series model/hybrid model/CatBoost algorithm/machine learning/Dalian City

分类

资源环境

引用本文复制引用

赵凌霄,李智扬,屈磊磊..基于EMD和CatBoost算法的改进时间序列模型[J].南京林业大学学报(自然科学版),2024,48(3):268-274,7.

基金项目

辽宁省博士科研启动基金项目(2020-BS-216) (2020-BS-216)

国家级大学生创新创业训练计划(202110158002) (202110158002)

辽宁省大学生创新创业训练计划(S202210158006). (S202210158006)

南京林业大学学报(自然科学版)

OA北大核心CSTPCD

1000-2006

访问量0
|
下载量0
段落导航相关论文