| 注册
首页|期刊导航|内蒙古民族大学学报(自然科学版)|基于深度学习的奶牛乳头检测方法研究

基于深度学习的奶牛乳头检测方法研究

席横流 王磊 王成军 夏事成

内蒙古民族大学学报(自然科学版)2024,Vol.39Issue(3):58-66,9.
内蒙古民族大学学报(自然科学版)2024,Vol.39Issue(3):58-66,9.DOI:10.14045/j.cnki.15-1220.2024.03.011

基于深度学习的奶牛乳头检测方法研究

Research on Detection Method of Cow's Nipple Based on Deep Learning

席横流 1王磊 2王成军 3夏事成1

作者信息

  • 1. 安徽科技学院机械工程学院,安徽滁州 239000
  • 2. 安徽科技学院机械工程学院,安徽滁州 239000||巢湖学院电子工程学院,安徽合肥 230000
  • 3. 安徽理工大学人工智能学院,安徽淮南 232000
  • 折叠

摘要

Abstract

In order to improve the accuracy and speed of cow's nipple target detection,the convolutional block attention module(CBAM)and lightweight convolution module(ghost module)were introduced into the YOLOv5 algo-rithm,and an improved CG-YOLOv5 target recognition algorithm was proposed.Improved methods:firstly,CBAM attention mechanism was introduced to learn and extract features related to cow's nipple target images.Secondly,the Ghost module lightens the C3 backbone network to reduce parameters and computation.Finally,the EIoU(effi-cient iou)loss function is used to replace the CIoU(complete iou)method to improve the regression accuracy and convergence speed of the model.The test results show that the improved CG-YOLOv5 target recognition algorithm performs well on the cow's nipple dataset,with an average detection accuracy of 92%and an inspection frame rate of 33.6,which is 4%and 16%higher than the original YOLOv5 algorithm respectively.This algorithm is superior to the original YOLOv5 algorithm in both detection accuracy and speed,verifying the applicability of the proposed CG-YOLOv5 algorithm in real-time detection of cow's nipple and other scenarios.

关键词

YOLOv5/奶牛乳头数据集/CBAM注意力机制/Ghost模块/EIoU损失函数

Key words

YOLOv5/cow's nipple dataset/CBAM attention mechanism/Ghost module/EIoU loss function

分类

农业科技

引用本文复制引用

席横流,王磊,王成军,夏事成..基于深度学习的奶牛乳头检测方法研究[J].内蒙古民族大学学报(自然科学版),2024,39(3):58-66,9.

基金项目

安徽省自然科学基金项目(2208085MF169) (2208085MF169)

安徽省高校协同创新项目(GXXT-2019-018) (GXXT-2019-018)

内蒙古民族大学学报(自然科学版)

1671-0185

访问量0
|
下载量0
段落导航相关论文