| 注册
首页|期刊导航|科技创新与应用|基于聚类方法的负样本生成器研究与实现

基于聚类方法的负样本生成器研究与实现

温欣 丁怡泽 屈克将 丁建新 王海涛 王建华 王天

科技创新与应用2024,Vol.14Issue(16):1-6,6.
科技创新与应用2024,Vol.14Issue(16):1-6,6.DOI:10.19981/j.CN23-1581/G3.2024.16.001

基于聚类方法的负样本生成器研究与实现

温欣 1丁怡泽 2屈克将 1丁建新 1王海涛 1王建华 1王天3

作者信息

  • 1. 昆仑数智科技有限责任公司智慧油服事业部,北京 100071
  • 2. 中国石油大学(北京)信息科学与工程学院,北京 102249||联通支付有限公司技术部,北京 100032
  • 3. 中国石油大学(北京)信息科学与工程学院,北京 102249
  • 折叠

摘要

Abstract

The goal of knowledge graph embedding is to generate low-dimensional continuous feature vectors for entities and relationships in knowledge graph,so that computers can mine the potential semantics of knowledge through mathematical operations.It is applied to downstream tasks such as triple completion,entity classification and entity parsing.The translation model(Trans)is a simple and effective method for embedding knowledge graph,which uses negative sampling method to improve the accuracy of knowledge graph embedding.However,the traditional negative sampling method uses random negative sampling,which is easy to generate low-quality negative triple,which leads to inaccurate training of embedded vectors of entities and relations.To solve this problem,a Negative Sampling of Similar Entities(NSSE)based on Canopy and K-means method is proposed to generate high quality negative samples.The experimental results show that the translation model using NSSE achieves better results in embedding vector generation than the original model.

关键词

知识图谱嵌入/翻译模型/负采样/相似实体/聚类方法

Key words

knowledge graph embedding/translation model/negative sampling/similar entities/clustering algorithm

分类

信息技术与安全科学

引用本文复制引用

温欣,丁怡泽,屈克将,丁建新,王海涛,王建华,王天..基于聚类方法的负样本生成器研究与实现[J].科技创新与应用,2024,14(16):1-6,6.

基金项目

国家重点研发计划资助(2019YFC0312003) (2019YFC0312003)

科技创新与应用

2095-2945

访问量0
|
下载量0
段落导航相关论文