|国家科技期刊平台
首页|期刊导航|热带气象学报|基于机器学习的目标点雷电安全风险预警方法研究

基于机器学习的目标点雷电安全风险预警方法研究OA北大核心CSTPCD

Target Point Lightning Safety Risk Early Warning Based on Machine Learning

中文摘要英文摘要

收集广东地区1404组包括四个预警类型历史雷暴过程数据样本.结合目标点周围雷电发生的物理特征、雷电灾害的孕灾环境和承灾体特征的7个预报因子,利用四种机器学习算法训练得到面向目标点的雷电安全风险分级预警模型,并开展多指标对各模型进行评价分析,发现无等级模型和四级等级模型中都是随机森林算法的预警准确率最好,分别是95%和73%,而传统的卷积神经网络模型效果不佳.并选取广州塔作为目标点进行模型验证方法可行性,最终得到适应于广东雷暴特征的雷电安全风险预警分级模型.同时,根据本研究过程中可能存在不足提出下一步优化升级思路和方法.

The present study aimed to develop an accurate lightning risk classification and warning model for target points by using 1404 sets of data from four types of historical thunderstorm processes in Guangdong.Four machine learning algorithms were employed,and seven forecast factors,such as the physical characteristics of lightning occurrence around the target point,the breeding environment of lightning hazard,and the characteristics of the disaster-bearing body,were adopted to conduct multi-index evaluation and analysis of each risk early warning model.The results showed that the random forest algorithm exhibited the highest early warning accuracy in both the no-level model(95%)and the four-level model(73%).In contrast,the traditional convolutional neural network model proved to be ineffective for this purpose.Canton Tower was selected as the target point for model feasibility verification,and a lightning safety risk warning grading model tailored to the characteristics of thunderstorms in Guangdong was obtained.Finally,based on the identified deficiencies in the research process,ideas and methods for future optimization were proposed.

殷启元;林蟒;杨思鹏;朱怡颖;方俏娴;杜晖;周方聪

广东省气候中心,广东 广州 510641||海南省南海气象防灾减灾重点实验室,海南 海口 571000海珠区气象局,广东 广州 510220中国气象局广州热带海洋气象研究所,广东 广州 510641广东省气候中心,广东 广州 510641海南省南海气象防灾减灾重点实验室,海南 海口 571000

大气科学

雷电雷电安全风险预警机器学习

lightninglightning safetyrisk warningmachine learning

《热带气象学报》 2024 (002)

217-225 / 9

中国气象局雷电重点开放实验室(2023KELL-B006);海南省自然科学基金项目(422QN428)共同资助

10.16032/j.issn.1004-4965.2024.021

评论