基于对齐原型网络的小样本异常流量分类OA北大核心CSTPCD
Aligned prototype network for few-shot anomaly traffic classification
异常流量分类是应对网络攻击,制定网络防御的前提.网络流量数据量大导致分析成本高,新型异常流量标记样本数量少导致分类难度大,小样本学习能有效应对这些问题.但目前小样本学习的方法仍然面对着复杂的模型或计算过程带来的效率低下、训练和测试样本分布偏差导致的监督崩溃问题.本文提出了一种基于对齐的原型网络,包含内部对齐和外部对齐模块.该方法首先基于原型网络在元学习框架下生成类别原型,其内部对齐模块通过支持集的预测损失来矫正原型在样本分布空间中的偏差,外部对齐模块通过对比原型和查询集中样本之间的相似性,将原型嵌入进查询集的分布空间,生成动态矫正后的类别原型,从而增强了原型在不同分布下的动态适应能力.基于对齐的原型网络在没有添加额外的参数和网络结构的情况下改进了模型的训练过程,保持快速检测的同时提升了分类性能.在CIC-FS-IDS-2017和CSE-FS-IDS-2018数据集上的实验结果表明,本文方法的F1值为98%,相比于其他模型提高了3.37%~4.85%,运行时间降低了89.12%~93.14%.此外,该方法具有更强的鲁棒性,在更多的异常类别和更少的支持样本的情况下仍然能保持较好的性能.
Anomaly traffic classification is a prerequisite for responding to cyber attacks and developing net-work defenses.The large amount of network traffic data leads to high analysis costs,and the small number of new anomaly traffic labeled samples makes classification difficult.Few-shot learning can effectively address this problem.However,few-shot learning based methods still face the problems of low efficiency caused by complex models or computational processes,as well as supervised collapse caused by training and testing sample distribution biases.This paper proposes an Aligned Prototype Network(APN)that includes internal and external alignment modules.This method first generates a category prototype based on a prototype net-work in a meta learning framework.The internal alignment module corrects the deviation of the prototype in the sample distribution space through the prediction loss of the support set.The external alignment module embeds the prototype into the distribution space of the query set by comparing the similarity between the pro-totype and the query set samples,generating a dynamically corrected category prototype and enhancing the dynamic adaptability of the prototype under different distributions.APN improves the training process of the model without adding additional parameters and network structure,maintaining fast detection while improv-ing classification performance.The experimental results on the CIC-FS-IDS-2017 and CSE-FS-IDS-2018 da-tasets show that method in this paper achieves an F1 value of 98%,demonstrating a performance improve-ment of 3.37%~4.85%compared to other models,with a reduction of 89.12%~93.14%in running time.Additionally,this method exhibits stronger robustness,maintaining good performance even with more anomaly categories and fewer supporting samples.
林同灿;葛文翰;王俊峰
四川大学计算机学院,成都 610065
计算机与自动化
异常流量入侵检测小样本学习
Anomaly trafficIntrusion detectionFew-shot learning
《四川大学学报(自然科学版)》 2024 (003)
3-14 / 12
国家重点研发计划(2022YFB3305200);国家自然科学基金(U2133208);四川省青年科技创新研究团队(2022JDTD0014);四川省科技计划项目(2022YFG0168)
评论