| 注册
首页|期刊导航|山东电力技术|基于可解释关系模型的SCR入口气温预测

基于可解释关系模型的SCR入口气温预测

路宽 杨兴森 张绪辉 孙雯雪 王海仰 杨子江

山东电力技术2024,Vol.51Issue(5):63-72,10.
山东电力技术2024,Vol.51Issue(5):63-72,10.DOI:10.20097/j.cnki.issn1007-9904.2024.05.008

基于可解释关系模型的SCR入口气温预测

Prediction of SCR Inlet Gas Temperature Based on Interpretable Relationship Model

路宽 1杨兴森 1张绪辉 1孙雯雪 2王海仰 3杨子江4

作者信息

  • 1. 国网山东省电力公司电力科学研究院,山东 济南 250003
  • 2. 国网山东省电力公司济南市章丘区供电公司,山东 济南 250020
  • 3. 华电青岛发电有限公司,山东 青岛 370200
  • 4. 山东科技大学电气与自动化工程学院,山东 青岛 266590
  • 折叠

摘要

Abstract

The proportion of new energy in the power generation in the whole society is constantly increasing.To shave peaks and fill valleys,the thermal power plants must increase their operating time in the low-load range,which has a negative effect on the denitrification of selective catalytic reduction(SCR).Therefore,accurate prediction of SCR gas temperature(SCRIGT)at the inlet is crucial.Firstly,using the operating parameters of the power plant as input and the ratio of power to SCRIGT as output,the XGBOOST model was used for prediction to obtain SCRIGT.The results show that for two different types of thermal power units,the average absolute percentage error(MAPE)is 3.07%and 2.49%,respectively.Then,the local interpretable model agnostic explanations(LIME)was applied to explain the prediction result of XGBOOST model,which finds a linear relationship between load and load∙SCRIGT-1 with R-squared of 0.994,based on which an interpretable relationship model was constructed.Finally,the comparative analysis shows that the mean absolute percentage errors of the interpretable relationship model have been improved to 0.68%and 0.97%,respectively.

关键词

XGBOOST模型/LIME算法/SCR入口烟气温度/火电机组

Key words

XGBOOST model/LIME algorithm/SCRIGT/thermal power unit

分类

信息技术与安全科学

引用本文复制引用

路宽,杨兴森,张绪辉,孙雯雪,王海仰,杨子江..基于可解释关系模型的SCR入口气温预测[J].山东电力技术,2024,51(5):63-72,10.

基金项目

国家自然科学基金项目(62273214) (62273214)

山东省自然科学基金项目(ZR2023MF083). National Natural Science Foundation of China(62273214) (ZR2023MF083)

Shandong Provincial Natural Science Foundation(ZR2023MF083). (ZR2023MF083)

山东电力技术

OACSTPCD

1007-9904

访问量0
|
下载量0
段落导航相关论文