|国家科技期刊平台
首页|期刊导航|山西大学学报(自然科学版)|基于稳定学习的多兴趣序列推荐网络

基于稳定学习的多兴趣序列推荐网络OA北大核心CSTPCD

Sequential Recommendation of Multi-Interest Network Based on Stable Learning

中文摘要英文摘要

多兴趣网络以多个表示向量来提取用户多个兴趣,在序列推荐中展现了优秀的表现.然而,用户多个兴趣通常高度相关,模型可能学习到噪声兴趣与目标物品之间的虚假相关性.一旦数据分布变化,兴趣之间的相关性也会改变,虚假相关性将误导模型做出错误预测.为了缓解这个问题,本文提出了一种新的基于稳定学习的多兴趣网络,试图消除模型提取的兴趣之间的相关性,来避免模型捕获虚假相关性.本文采用注意力模块提取多个兴趣,并选择最重要的兴趣进行最终预测.同时,基于独立性准则对训练样本进行加权,以最小化提取到兴趣之间的相关性.本文进行了大量实验显示,在集外(Out-of-Distribution,OOD)和随机设置下,分别取得了36.8%和21.7%的相对提升.

Multi-interest models,which extract interests of a user as multiple representation vectors,have shown promising perfor-mances for sequential recommendation.However,considering that multiple interests of a user are usually highly correlated,the mod-el has chance to learn spurious correlations between noisy interests and target items.Once the data distribution changes,the correla-tions among interests may also change,and the spurious correlations will mislead the model to make wrong predictions.To solve such problem,we propose a novel model of Multi-Interest network with Stable Learning(MISL),which attempts to de-correlate the extracted interests,and thus spurious correlations can be eliminated.MISL applies an attentive module to extract multiple interests,and then selects the most important one for making final predictions.Meanwhile,MISL incorporates a weighted correlation estima-tion loss based on independence criterion,with which training samples are weighted,to minimize the correlations among extracted interests.Extensive experiments have been conducted under both Out-of-Distribution(OOD)and random settings,and up to 36.8%and 21.7%relative improvements are achieved respectively.

刘昭呈;朱振熙;刘强

北京达佳互联信息技术有限公司,北京 100000中国科学院自动化研究所 多模态人工智能系统国家重点实验室,北京 100000

计算机与自动化

神经网络信息检索推荐系统

neural networksinformation retrievalrecommendation system

《山西大学学报(自然科学版)》 2024 (003)

471-480 / 10

国家自然科学基金(62206291)

10.13451/j.sxu.ns.2024004

评论