基于提示增强原型网络的小样本多标签方面类别检测OA北大核心CSTPCD
Few-shot Multi-label Aspect Category Detection Based on Prompt-Enhanced Prototypical Network
小样本多标签方面类别检测是细粒度情感分析的研究热点.在基于原型网络的方法中,训练数据缺乏以及与当前方面类别无关的噪音词严重影响了采用注意力机制生成原型向量的质量.针对这一问题,本文提出了基于提示增强原型网络模型,首先,利用提示学习对齐预训练任务与下游任务,同时借助提示信息指导模型进行句子表示,从而学习到更具有辨别性的向量,有效地促使类别信息易区分,并采用余弦相似度计算损失,降低高维向量空间的影响;其次,设计了减轻噪音对句子向量表示干扰的优化模型,促进相同方面类别的句子在嵌入空间中聚集.实验结果表明:该模型在三个公开数据集的F1值比当前最优(state-of-the-art,SOTA)模型分别提升了4.35%,8.62%,8.39%,可以有效的检测方面类别.
Few-shot multi-label aspect category detection is a prominent area of research within fine-grained sentiment analysis.In methods based on prototypical networks,the lack of training data and the presence of irrelevant noise words severely impact the quality of prototype vector generation using attention mechanisms.Addressing this challenge,our study introduces the ProtPrompt model,an innovative prototype network enhanced through prompt learning.Firstly,we align pre-trained tasks with downstream tasks using prompt learning,guiding the model in precise sentence representation to learn more discriminative vectors.This effectively en-hances category distinguishability.Meanwhile,we utilize cosine similarity to calculate the loss function instead of the commonly used Euclidean distance in prototypical networks,mitigating the influence of high-dimensional vector spaces.Secondly,we design an optimized framework to attenuate noise interference on sentence vector representation,thereby fostering the aggregation of sen-tences sharing the same aspect category within the embedding space.Experimental results validate the effectiveness of our proposed ProtPrompt model on three publicly available datasets.The experimental results show that the model improves the F1 score over the state-of-the-art(SOTA)model by 4.35%,8.62%,and 8.39%for the three publicly available datasets,respectively.This substantiates its ability to efficiently detect aspect categories.
管超峰;白宇;周贤雷
沈阳航空航天大学 计算机学院,辽宁 沈阳 110136
物理学
方面类别检测原型网络提示学习多标签分类元学习
aspect category detectionprototypical networkprompt learningmulti-label classificationmeta-learning
《山西大学学报(自然科学版)》 2024 (003)
494-505 / 12
国家自然科学基金(U1908216)
评论