| 注册
首页|期刊导航|统计与决策|小样本下岭PLS-SEM与岭CB-SEM的比较

小样本下岭PLS-SEM与岭CB-SEM的比较

王新芸 袁克海 唐加山 温勇

统计与决策2024,Vol.40Issue(10):46-51,6.
统计与决策2024,Vol.40Issue(10):46-51,6.DOI:10.13546/j.cnki.tjyjc.2024.10.008

小样本下岭PLS-SEM与岭CB-SEM的比较

Comparison of Ridge LS-SEM and Ridge B-SEM Under Small Samples

王新芸 1袁克海 1唐加山 1温勇1

作者信息

  • 1. 南京邮电大学 理学院,南京 210000
  • 折叠

摘要

Abstract

There are two main structural equation modeling:CB-SEM(covariance-based SEM)and PLS-SEM(partial least squares SEM).When the sample size is small,the CB-SEM method often fails to converge,which can be improved by using ridge method.This paper mainly studies the application of ridge method to PLS-SEM,and compares the performance of PLS-SEM and CB-SEM under ridge method.The research shows that CB-SEM and PLS-SEM estimators are generally more accurate than con-ventional CB-SEM and PLS-SEM estimators,but the bias has not been significantly improved.The estimation accuracy of PLS-SEM and ridge PLS-SEM is better than that of CB-SEM and ridge CB-SEM under small samples.For endogenous latent variables affected by intermediate variables,ridge PLS-SEM is the most accurate in estimating the influence(path coefficient)of other latent variables.

关键词

结构方程模型/岭方法/岭CB-SEM/PLS-SEM/蒙特卡洛模拟

Key words

structural equation modeling/ridge methods/ridge CB-SEM/PLS-SEM/Monte Carlo simulation

分类

管理科学

引用本文复制引用

王新芸,袁克海,唐加山,温勇..小样本下岭PLS-SEM与岭CB-SEM的比较[J].统计与决策,2024,40(10):46-51,6.

基金项目

国家自然科学基金资助项目(31971029) (31971029)

统计与决策

OA北大核心CHSSCDCSSCICSTPCD

1002-6487

访问量0
|
下载量0
段落导航相关论文