|国家科技期刊平台
首页|期刊导航|物理化学学报|耦合甘油高选择性转化为甲酸盐与制氢的酸碱双电解液流动电解器

耦合甘油高选择性转化为甲酸盐与制氢的酸碱双电解液流动电解器OA北大核心CSTPCD

Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer

中文摘要英文摘要

氢气因其高能量密度、可持续性和燃烧后无污染等优点,被认为是取代传统化石燃料的最具前途的新兴能源载体之一.其中,电解水制氢技术因为其高效和绿色的特性而备受关注.然而电解水制氢过程通常受到阳极析氧反应(Oxygen Evolution Reaction,OER)的限制,因此这种方法的大规模应用面临重大挑战.克服这一难题的一个有前途的解决方法是在阳极上使用电催化甘油氧化反应(Glycerol Oxidation Reaction,GOR)代替OER,这种替代反应可以实现节能降耗的同时提高电解水制氢的效率,进一步推动氢气作为清洁能源的发展.然而,这一目标的实现需要高效、低成本且高选择性的GOR电催化剂.在这篇文章中,我们报告了一种新型的酸碱双电解质流电解器(AADEF-electrolyzer),用于在碱性阳极GOR耦合酸性阴极析氢反应(Hydrogen Evolution Reaction,HER).我们通过一种简单的水热煅烧方法制备了一种在镍泡沫(NF)上原位生长的自支撑的NiCo2O4纳米针电极材料(NiCo2O4/NF).该电极在GOR中表现出优异的电催化性能,在低电位下实现了高的电解电流密度,对甲酸盐的生产表现出优异的选择性,法拉第效率超过85%.密度泛函理论计算表明,NiCo2O4对GOR具有较低的反应能垒,Ni的存在有利于降低Co的电子态密度,从而实现NiCo2O4与中间体的高效解离,促进甲酸的生成.基于NiCo2O4/NF出色的GOR性能和电化学中和能(ENE)理论,我们构建了一个新型的AADEF-electrolyzer,利用NiCo2O4/NF作为GOR的阳极,配合酸性阴极进行析氢反应(HER).实验结果表明,AADEF-electrolyzer对GOR具有低过电位和高选择性产甲酸的优异性能,仅需0.36 V的电压即可实现10 mA∙cm-2的电流密度,平均产甲酸的法拉第效率为85%.同时该电解槽表现出良好的长期稳定性和辅助产氢性能,阴极产氢的法拉第效率接近100%.这种低成本、易于制备的自支撑电极材料和新型酸碱双电解质流动电解器为促进化学品的增值转化和开发新型混合电解系统或其他相关电化学反应的混合电解装置提供了创新策略.

Owing to its high energy density,sustainability,and pollution-free combustion,hydrogen is considered one of the most promising emerging energy carriers to replace conventional fossil fuels.Among the various hydrogen production technologies,electrolytic water splitting has gained significant attention thanks to its high efficiency and environmentally friendly characteristics.However,the large-scale application of electrolytic water splitting is often hindered by the limitations imposed by the anodic oxygen evolution reaction(OER).To overcome this challenge,a promising alternative approach is to replace the OER with the electrocatalytic glycerol oxidation reaction(GOR)at the anode.This substitution can lead to energy savings and enhanced efficiency of electrolytic water splitting for hydrogen production,thereby further promoting the development of hydrogen as a clean energy source.However,the application of the GOR at anode requires efficient,cost-effective,and highly selective electrocatalysts.To this end,we report the development of a novel acid-alkaline dual-electrolyte flow electrolyzer(AADEF-electrolyzer)by coupling the GOR at the alkaline anode with the hydrogen evolution reaction(HER)at the acidic cathode.A self-supported NiCo2O4 nanoneedle electrode material(NiCo2O4/NF)has been in situ grown on nickel foam(NF)using a simple hydrothermal-calcination method.The electrode demonstrates excellent electrocatalytic performance for the GOR,achieving high electrolysis current density at low potentials and exhibiting high selectivity for formate production,with the Faraday efficiency exceeding 85%.Density functional theory(DFT)calculations imply that NiCo2O4 has a lower energy barrier for the reaction and that the presence of Ni facilitates the reduction of the Co state density,thereby promoting the GOR.An innovative AADEF-electrolyzer was constructed by utilizing NiCo2O4/NF as the anode for the GOR and an acidic cathode for the HER.Experimental results indicate that the AADEF-electrolyzer exhibits excellent GOR performance with a low overpotential and high selectivity toward formate production.It requires a voltage of only 0.36 V to achieve a current density of 10 mA·cm-2 and long-term stability with a Faraday efficiency close to 100%for hydrogen production.The low-cost and easily fabricated self-supported electrode material,together with the acid-alkaline dual-electrolyte flow electrolyzer,provide an innovative strategy for developing hybrid electrolysis systems.

冯辛;郭可鑫;贾春光;刘博文;次素琴;陈俊翔;温珍海

南昌航空大学,江西省持久性污染物控制与资源循环重点实验室,南昌 330063中国科学院福建物质结构研究所,中科院功能纳米结构设计与组装重点实验室,福建省纳米材料重点实验室,福州 350002南昌航空大学,江西省持久性污染物控制与资源循环重点实验室,南昌 330063||中国科学院福建物质结构研究所,中科院功能纳米结构设计与组装重点实验室,福建省纳米材料重点实验室,福州 350002

化学

制氢甘油氧化电催化电解器

Hydrogen productionGlycerol oxidationElectrocatalysisElectrolyzer

《物理化学学报》 2024 (005)

31-34 / 4

The project was supported by the National Natural Science Foundation of China(22168025)and the Natural Science Foundation of Jiangxi Province(20192BAB203013,20202ACBL203003). 国家自然科学基金(22168025)和江西省自然科学基金(20192BAB203013,20202ACBL203003)资助项目

10.3866/PKU.WHXB202303050

评论