超薄2D/2D NiPS3/C3N5异质结的界面工程促进光催化产氢OA北大核心CSTPCD
Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution
探索高效水分解光催化剂具有获得氢能源的巨大潜力.调控异质结界面可以有效地促进电荷载流子的分离和太阳能的利用,从而提高光催化活性.本工作使用了一种机械混合辅助自组装方法来构建NiPS3(NPS)纳米片(NSs)/C3N5(CN)NSs(NPS/CN)异质结,即在二维(2D)CN NSs表面紧密沉积2D NPS NSs以形成2D/2D异质结构.在可见光下,通过在去离子水和海水中分解水生成氢气来评价样品的光催化性能.与CN NSs和NPS NSs相比,NPS/CN复合材料显示出较高的光催化产氢(PHE)活性,这是由于光捕获能力增加和异质结形成的协同作用所致.然而,过量的NPS NSs沉积在CN NSs表面会降低NPS/CN中CN NSs组分的光吸收,从而降低NPS/CN复合材料的PHE活性.这表明,NPS/CN复合材料要获得良好的光催化活性,需要两个组分之间适当的质量比.优化后的光催化剂(3-NPS/CN)具有良好的结构稳定性,在可见光下PHE效率最高,为47.71 μmol∙h-1,是CN NSs的2385.50倍.此外,3-NPS/CN在海水中也表现出良好的PHE活性,反应速率为8.99 μmol∙h-1.采用光电化学、稳态光致发光(PL)、时间分辨光致发光(TR-PL)、稳态表面光电压(SPV)和时间分辨表面光电压(TPV)技术研究了不同光催化剂上的电荷分离和迁移.根据表征结果提出了一种可能的PHE机理.在NPS/CN光催化剂中,由于CN NSs和NPS NSs之间的电位差和强的界面电子耦合,光生电子从CN NSs的导带迅速迁移到NPS NSs的导带.然后,聚积在NPS NSs组份导带上的光生电子可以有效地还原质子生成氢气分子.同时,在三乙醇胺(TEOA)分子存在下,CN NSs和NPS NSs的价带上的光生空穴被消耗.本研究提供了一种简单的2D/2D异质结构光催化剂制备方法,该方法对于构建高效二维异质结光催化剂在能源领域中的应用具有重要价值.
This study focuses on exploring efficient photocatalysts for water splitting,which holds great potential for harnessing hydrogen(H2)as a renewable energy source.Modulating the heterojunction interface is known to enhance charge carrier separation and solar energy utilization,thereby boosting photocatalytic activity.In this work,a mechanical mixing-assisted self-assembly approach was developed to construct a heterojunction between NiPS3(NPS)nanosheets(NSs)and C3N5(CN)NSs.Specifically,two-dimensional(2D)NPS NSs were tightly deposited on 2D CN NSs surface to gain a 2D/2D heterostructure.The photocatalytic performance of the synthesized photocatalysts was determined by their ability to generate H2 through water splitting,both in deionized(DI)water and seawater,under visible light.The resulting NPS NSs/CN NSs(NPS/CN)composites possessed boosted photocatalytic hydrogen evolution(PHE)activity related to CN NSs and NPS NSs.This improvement was assigned to the synergistic effect of increased light-harvesting capacity and heterojunction formation.Nevertheless,an excessive amount of deposited NPS NSs on the surface of CN NSs was found to reduce the light absorption of the CN NSs component in the NPS/CN composites,resulting in decreased PHE activity.Therefore,it was determined that an appropriate mass ratio between the two components is necessary to achieve excellent photocatalytic activity for the NPS/CN composites.The optimized photocatalyst,referred to as 3-NPS/CN,demonstrated the highest visible-light-driven PHE efficiency of 47.71 μmol∙h-1,which was 2385.50 times higher than that of CN NSs.Moreover,3-NPS/CN also exhibited excellent PHE activity in seawater,with a rate of 8.99 μmol∙h-1.The photoelectrochemical,steady-state photoluminescence(PL),time-resolved PL(TR-PL),steady-state surface photovoltage(SPV)and time-resolved surface photovoltage(TPV)techniques were performed to investigate the charge separation and migration behaviors of various photocatalysts.Based on the characterization results,our group proposed a reasonable PHE mechanism.In the NPS/CN photocatalysts,photo-induced electrons rapidly migrated from the conduction band(CB)of CN NSs to the CB of NPS NSs due to the potential difference and strong interfacial electronic coupling between the two materials.The photogenerated electrons accumulated on the CB of the NPS NSs component efficiently reduced protons to generate H2 molecules.Concurrently,photogenerated holes on the valence band(VB)of CN NSs and NPS NSs were consumed with the assistance of triethanolamine(TEOA)molecules.This study presents a facile method for fabricating 2D/2D heterostructured photocatalysts,which hold promise for efficient and robust implementation in energy applications.
胡佳伟;夏楷;杨奥;张志豪;肖雯;刘超;张勤芳
盐城工学院材料科学与工程学院,江苏 盐城 224051盐城工学院材料科学与工程学院,江苏 盐城 224051||盐城工学院江苏省生态环境材料重点实验室,江苏 盐城 224051
化学
C3N5纳米片NiPS3纳米片光催化产氢异质结
C3N5 nanosheetsNiPS3 nanosheetsPhotocatalysisHydrogen productionHeterojunction
《物理化学学报》 2024 (005)
42-45 / 4
This work was supported by the National Natural Science Foundation of China(51902282,12274361),Qinglan Project of Jiangsu of China,Natural Science Foundation of Jiangsu Province,China(BK20211361),College Natural Science Research Project of Jiangsu Province,China(20KJA430004)and Open Project of Jiangsu Provincial Key Laboratory of Eco-Environmental Materials,China. 国家自然科学基金(51902282,12274361),江苏高校青蓝工程,江苏省自然科学基金(BK20211361),江苏省高校自然科学研究项目(20KJA430004)和江苏省生态环境材料重点实验室开放课题资助项目
评论