| 注册
首页|期刊导航|网络与信息安全学报|DNNobfus:一种基于混淆的端侧模型保护框架技术研究

DNNobfus:一种基于混淆的端侧模型保护框架技术研究

宋飞扬 赵鑫淼 严飞 程斌林 张立强 杨小林 王洋

网络与信息安全学报2024,Vol.10Issue(2):143-153,11.
网络与信息安全学报2024,Vol.10Issue(2):143-153,11.DOI:10.11959/j.issn.2096-109x.2024019

DNNobfus:一种基于混淆的端侧模型保护框架技术研究

DNNobfus:a study on obfuscation-based edge-side model protection framework

宋飞扬 1赵鑫淼 1严飞 1程斌林 2张立强 1杨小林 3王洋4

作者信息

  • 1. 武汉大学国家网络安全学院空天信息安全与可信计算教育部重点实验室,湖北武汉 430072
  • 2. 山东大学网络空间安全学院,山东青岛 266237
  • 3. 浪潮智慧科技有限公司,山东济南 250101
  • 4. 山东浪潮科学研究院有限公司,山东济南 250101
  • 折叠

摘要

Abstract

The proliferation of artificial intelligence models has rendered them vulnerable to a myriad of security threats.The extensive integration of deep learning models into edge devices has introduced novel security challenges.Given the analogous structural characteristics of deep neural networks,adversaries can employ decompilation tactics to extract model structural details and parameters,facilitating the reconstruction of these models.Such actions can compromise the intellectual property rights of the model and increase the risk of white-box attacks.To mitigate the capability of model decompilers to locate and identify model operators,acquire parameters,and parse network topologies,an obfuscation framework was proposed.This framework was embedded within the model compilation process to safeguard against model extraction attacks.During the frontend optimization phase of deep learning compilers,three obfuscation techniques were developed and integrated:operator obfuscation,parameter obfuscation,and network topology obfuscation.The framework introduced opaque predicates,incorporated fake control flows,and embedded redundant memory access to thwart the reverse engineering efforts of model decompilers.The experimental findings demonstrate that the obfuscation framework,named DNNobfus,significantly diminishes the accuracy of state-of-the-art model decompilation tools in identifying model operator types and network connections to 21.63%and 48.24%,respectively.Additionally,DNNobfus achieves an average time efficiency of 67.93%and an average space efficiency of 88.37%,surpassing the performance of the obfuscation tool Obfuscator-LLVM in both respects.

关键词

人工智能安全/代码混淆/逆向工程/模型保护

Key words

artificial intelligence safety/code obfuscation/reverse engineering/model protection

分类

信息技术与安全科学

引用本文复制引用

宋飞扬,赵鑫淼,严飞,程斌林,张立强,杨小林,王洋..DNNobfus:一种基于混淆的端侧模型保护框架技术研究[J].网络与信息安全学报,2024,10(2):143-153,11.

基金项目

湖北省重大研究计划项目(No.2023BAA027) (No.2023BAA027)

国家自然科学基金(No.62172144) (No.62172144)

国家重点研发计划项目(No.2022YFB3103804)The Major Research Plan of Hubei Province(No.2023BAA027),The National Natural Science Foundation of China(No.62172144),The National Key Research and Development Program of China(No.2022YFB3103804) (No.2022YFB3103804)

网络与信息安全学报

OACSTPCD

2096-109X

访问量0
|
下载量0
段落导航相关论文