|国家科技期刊平台
首页|期刊导航|网络安全与数据治理|面向社交平台应急关联信息的文本分类综述

面向社交平台应急关联信息的文本分类综述OA

Overview of text classification for emergency related information on social platforms

中文摘要英文摘要

紧急事件发生初期,及时从海量社交平台数据中挖掘有效信息为应急响应提供决策参考具有重要意义.随着自然语言处理技术飞速发展,文本分类已被逐渐运用于该领域,主要可分为基于传统机器学习的K近邻、朴素贝叶斯、决策树、支持向量机等方法,以及基于深度学习的CNN、RNN、GCN、Transformer等方法.从算法原理、发展历程、适用领域及性能优劣等方面对当前主流的文本分类方法进行分析,调研了社交平台应急关联信息文本分类的研究现状与热点,归纳了现有方法面临的问题与挑战,展望了未来研究方向,为后续科研工作提供参考与启示.

In the early stages of an emergency event,timely extraction of valuable information from massive social media data holds great significance in providing decision-making references for emergency response.With the rapid development of natural language processing,text classification has gradually been applied in this field,mainly divided into traditional machine learning based methods such as K-Nearest Neighbor,Naive Bayes,Decision Tree,Support Vector Machines,and deep learning based methods such as CNN,RNN,GCN and Transformer.This paper analyzes the current mainstream text classification methods from aspects including algorithm principles,development history,applicable fields,advantages and disadvantages.It investigates the research status and hotspots of text classification for emergency-related information on social media platforms,summarizes the problems and challenges faced by existing methods,and presents future research directions,providing references and inspiration for subsequent scientific research work.

姜钰棋;强子珊;卜凡亮

中国人民公安大学 信息网络安全学院,北京 100240

计算机与自动化

文本分类机器学习深度学习社交平台应急关联信息

text classificationmachine learningdeep learningemergency related information on social platforms

《网络安全与数据治理》 2024 (005)

1-10,34 / 11

中国人民公安大学安全防范工程双一流专项(2023SYL08)

10.19358/j.issn.2097-1788.2024.05.001

评论