|国家科技期刊平台
首页|期刊导航|网络安全与数据治理|数据科学的可视化恶意软件分析技术在档案数字化安全管理系统中的应用

数据科学的可视化恶意软件分析技术在档案数字化安全管理系统中的应用OA

Application of visual malware analysis technology of data science in archive digital security management system

中文摘要英文摘要

数据科学的可视化恶意软件分析技术是当前信息安全领域中的重要的创新技术,旨在提高对档案数字化系统中潜在威胁的检测和应对能力.系统论述了基于数据科学的可视化恶意软件分析技术在档案数字化安全管理系统中的应用,并结合可视化数据集构建了基于神经网络的恶意检测模型.使用可视化绘图对恶意软件的检出效果和迭代趋势进行分析,其优点对比传统的数据剥离手段更加高效并更具可读性,且在分析的过程中能够迅速、准确地应对不断演进的威胁,为数字化档案的安全提供了有力的支持.

The application of data science's visual malware analysis technique is an important and innovative technique in the current information security field.This technology combines methods of data analysis,machine learning and visualization,and aims to improve the detection and response capability of potential threats in archive digitization systems.This paper discusses the application of data science-based visual malware analysis technology in archive digitization security management through practice,and constructs a neural network-based malware detection model by combining visual data sets.The advantages of using visual mapping to analyze the detection effect and iterative trend of malware are more efficient and readable than the traditional means of data stripping,and in the process of analysis,it can more quickly and accurately respond to the evolving threats,which provides a strong support for the security of digital archives.

高伟波;徐炳雪;李仲琴;赫明春

江西省地质局核地质大队,江西 鹰潭 335001鹰潭开放大学 信息中心,江西 鹰潭 335001浙江大学 计算机学院,浙江 杭州 310013

计算机与自动化

档案数字化数据科学恶意软件威胁神经网络

archive digitizationdata sciencemalware threatsneural networks

《网络安全与数据治理》 2024 (005)

18-26 / 9

10.19358/j.issn.2097-1788.2024.05.003

评论