|国家科技期刊平台
首页|期刊导航|中国医疗设备|Mask R-CNN算法在转子间骨折诊断中的应用研究

Mask R-CNN算法在转子间骨折诊断中的应用研究OACSTPCD

Application of Mask R-CNN Algorithm in the Diagnosis of Intertrochanteric Fracture

中文摘要英文摘要

目的 基于Mask R-CNN算法实现一个计算机辅助诊断(Computer Aided Diagnosis,CAD)工具,以辅助经验不足的医生对转子间骨折进行诊断.方法 选取665例转子间骨折X光片数据为研究对象,按照8∶0.5∶1.5的比例设置训练集、验证集和测试集.采用迁移学习方法训练网络模型,实现CAD工具对转子间骨折的定位、分割和分类功能.同时招募3名住院医生和3名主治医生对CAD工具的分类性能进行测试.结果 CAD工具取得了0.867的准确度,相比主治医生0.888±0.010的平均分类水平仍有不足.在CAD工具的帮助下,住院医生的平均准确度从0.707±0.021提升至0.850±0.015,虽然未能达到主治医生的分类水平,但其差异无统计学意义(P=0.179).结论 CAD工具能够为医生提供有效的辅助信息,辅助经验不足的医生进行诊断,减少误诊情况的发生.

Objective To develop a computer aided diagnosis(CAD)tool based on the Mask R-CNN algorithm,aiming to assist less-experienced physicians in the diagnosis of intertrochanteric fractures.Methods A total of 665 cases of intertrochanteric fracture X-ray data were selected as the research subjects.The data were divided into training set,validation set,and testing set in a ratio of 8∶0.5∶1.5.The network model was trained using transfer learning method to develop a CAD tool with capabilities of localization,segmentation,and classification for intertrochanteric fractures.Three resident doctors and three attending physicians were recruited to test the classification performance of the CAD tool.Results The CAD tool achieved an accuracy of 0.867,which was slightly lower compared to the average classification level of attending physicians at 0.888±0.010.With the assistance of the CAD tool,the average accuracy of resident doctors improved from 0.707±0.021 to 0.850±0.015.Although it did not reach the classification level of the attending physicians,the difference was not statistically significant(P=0.179).Conclusion The CAD tools can provide valuable assistance to doctors,aid inexperienced physicians in diagnosis and reduce the occurrence of misdiagnosis by offering effective auxiliary information.

邓远阳;刘学思;聂瑞;李阳;张和华

重庆邮电大学 生物信息学院,重庆 400065陆军军医大学大坪医院 医学工程科陆军军医大学大坪医院 战创伤外科,重庆 400042

计算机与自动化

转子间骨折Mask R-CNNX光片计算机辅助诊断

intertrochanteric fracturesMask R-CNNX-raycomputer aided diagnosis

《中国医疗设备》 2024 (006)

23-29 / 7

重庆市技术创新与应用发展专项重点项目(CSTB2021TIAD-KPX0074).

10.3969/j.issn.1674-1633.2024.06.004

评论