| 注册
首页|期刊导航|中山大学学报(自然科学版)(中英文)|基于图卷积记忆网络对珠海臭氧时空预测

基于图卷积记忆网络对珠海臭氧时空预测

孙磊 蓝玉峰 梁秀姬 孙弦 聂会文 苏烨康 贺芸萍 王静 夏冬

中山大学学报(自然科学版)(中英文)2024,Vol.63Issue(3):48-59,12.
中山大学学报(自然科学版)(中英文)2024,Vol.63Issue(3):48-59,12.DOI:10.13471/j.cnki.acta.snus.ZR20230043

基于图卷积记忆网络对珠海臭氧时空预测

The spatio-temporal prediction of ozone in Zhuhai based on graph convolutional memory network

孙磊 1蓝玉峰 2梁秀姬 2孙弦 2聂会文 3苏烨康 2贺芸萍 2王静 2夏冬1

作者信息

  • 1. 珠海市公共气象服务中心,广东 珠海 519000||珠澳气象创新与应用研究中心,广东 珠海 519000
  • 2. 珠海市公共气象服务中心,广东 珠海 519000
  • 3. 珠澳气象创新与应用研究中心,广东 珠海 519000
  • 折叠

摘要

Abstract

Ozone(O₃)has become the primary factor affecting air quality over the Pearl River Delta and even the entire Guangdong Province.Although data-driven statistical models have shown improved forecast capabilities compared to numerical models,most of them operate grid-by-grid and cannot re-solve the spatial dependence between site data of non-Euclidean structures.Based on in-situ measure-ments from national environmental stations and surrounding weather stations in Zhuhai,this study per-forms hourly O₃ concentration forecasts for up to three days over multiple sites by constructing a graph convolution memory network(GCN-LSTM).The results show that GCN_LSTM forecasts at different lead times could accurately reproduce the annual,seasonal,and diurnal variations of O3,but the capa-bility of capturing daily variations decreases significantly with the increase in lead time.Further comparisons with the operational numerical model(GRACEs)and Long Short-Term Memory(LSTM)reveal that GCN-LSTM performs the best,with mean RMSE=27.13 μg/m3 and R=0.64,LSTM is the second(RMSE=28.44 μg/m3;R=0.61),and GRACEs presents distinct results(RMSE=40.93 μg/m3;R=0.33)in 72h forecasting.Compared with LSTM,GCN-LSTM considers all sites and their intercon-nections,it not only increases the calculation speed by 71%but also performs better and more stably over different sites.Moreover,it is also optimal for capturing O₃ pollution events in cold seasons.Additional sensitivity experiments reveal that considering more correlated variables improves forecasting capabilities.

关键词

臭氧/时空预报/机器学习/图卷积记忆网络

Key words

ozone(O₃)/spatial-temporal forecast/machine learning/graph convolution memory network

分类

天文与地球科学

引用本文复制引用

孙磊,蓝玉峰,梁秀姬,孙弦,聂会文,苏烨康,贺芸萍,王静,夏冬..基于图卷积记忆网络对珠海臭氧时空预测[J].中山大学学报(自然科学版)(中英文),2024,63(3):48-59,12.

基金项目

广东省气象局科技项目(GRMC2022Q16) (GRMC2022Q16)

中山大学学报(自然科学版)(中英文)

OA北大核心CSTPCD

0529-6579

访问量0
|
下载量0
段落导航相关论文